Rapid population growth and the development of industries result in an increase in solid waste. Glass, which represents a large proportion of solid waste, can be used in construction applications. The utilization of recycled glass waste in the asphalt mixture is considered an environmentally-friendly application. In this laboratory study, glass bottles were recycled by crushing, grinding, and sieving them into particles that pass through sieve No. 200 to be used as a partial replacement for the filler in the hot mixture asphalt of wearing course Type-A. The ratios (4, 4.3, 4.6, 4.9, 5.2,5.5) were used to determine the optimum asphalt content (OAC), and three ratios (30, 60, and 90) were used for the replacement of limestone powder filler to determine the optimum value of bitumen for glass-containing mixtures (GM). The glass-asphalt mixtures were compared with the control mixture using the Marshall test (stability, flow, voids, density), Moisture resistance was examined using (indirect tensile strength test), also scanning electron microscope photos of the glass-asphalt mixture sample were discussed was found that the glass asphalt achieved improvement in the properties of the asphalt mix as well as reduced the optimum bitumen content and also had a strong economic effect compared to the control mixture.
Background Cold atmospheric plasma (CAP) is widely used in the cancer therapy field. This type of plasma is very close to room temperature. This paper illustrates the effects of CAP on breast cancer tissues both in vivo and in vitro. Methods The mouse mammary adenocarcinoma cell line AN3 was used for the in vivo study, and the MCF7, AMJ13, AMN3, and HBL cell lines were used for the in vitro study. A floating electrode-dielectric barrier discharge (FE-DBD) system was used. The cold plasma produced by the device was tested against breast cancer cells. Results The induced cytotoxicity percentages were 61.7%, 68% and 58.07% for the MCF7, AMN3, and AMJ13 cell lines, respectively, whereas the normal breast tissue HBL cell line exhibited very li
... Show More
In this paper, the ability of using corn leaves as low-cost natural biowaste adsorbent material for the removal of Indigo Carmen (IC) dye was studied. Batch mode system was used to study several parameters such as, contact time (4 days), concentration of dye (10-50) ppm, adsorbent dosage (0.05-0.25) gram, pH (2-12) and temperature (30-60) oC. The corn leaf was characterized by Fourier-transform infrared spectroscopy device before and after the adsorption process of the IC dye and scanning electron microscope device was used to find the morphology of the adsorbent material. The experimental data was imputing with several isotherms where it fits with Freundlich (R2 = 0.9
... Show MoreAutomated medical diagnosis is an important topic, especially in detection and classification of diseases. Malaria is one of the most widespread diseases, with more than 200 million cases, according to the 2016 WHO report. Malaria is usually diagnosed using thin and thick blood smears under a microscope. However, proper diagnosis is difficult, especially in poor countries where the disease is most widespread. Therefore, automatic diagnostics helps in identifying the disease through images of red blood cells, with the use of machine learning techniques and digital image processing. This paper presents an accurate model using a Deep Convolutional Neural Network build from scratch. The paper also proposed three CNN
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreThe study investigates the water quality of the Orontes River, which is considered one of the important water recourses in Syria, as it is used for drinking, irrigation, swimming and industrial needs. A database of 660 measurements for 13 parameters concentrations used, were taken from 11 monitoring points distributed along the Orontes River for a period of five years from 2015-2019, and to study the correlation between parameters and their impact on water quality, statistical analysis was applied using (SPSS) program. Cluster analysis was applied in order to classify the pollution areas along the river, and two groups were given: (low pollution - high pollution), where the areas were classified according to the sources of pollution to w
... Show MoreThe assessment of data quality from different sources can be considered as a key challenge in supporting effective geospatial data integration and promoting collaboration in mapping projects. This paper presents a methodology for assessing positional and shape quality for authoritative large-scale data, such as Ordnance Survey (OS) UK data and General Directorate for Survey (GDS) Iraq data, and Volunteered Geographic Information (VGI), such as OpenStreetMap (OSM) data, with the intention of assessing possible integration. It is based on the measurement of discrepancies among the datasets, addressing positional accuracy and shape fidelity, using standard procedures and also directional statistics. Line feature comparison has been und
... Show MoreSorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.
Improving students’ use of argumentation is front and center in the increasing emphasis on scientific practice in K-12 Science and STEM programs. We explore the construct validity of scenario-based assessments of claim-evidence-reasoning (CER) and the structure of the CER construct with respect to a learning progression framework. We also seek to understand how middle school students progress. Establishing the purpose of an argument is a competency that a majority of middle school students meet, whereas quantitative reasoning is the most difficult, and the Rasch model indicates that the competencies form a unidimensional hierarchy of skills. We also find no evidence of differential item functioning between different scenarios, suggesting
... Show MoreRadiotherapy is medical use of ionizing radiation, and commonly applied to the
cancerous tumor because of its ability to control cell growth.
The amount of radiation used in photon radiation therapy called dose (measured
in grey unit), which depend on the type and stage of cancer being treated.
In our work, we studied the dose distribution given to the tumor at different
depths (zero-20 cm) treated with different field size (4×4- 23×23 cm).
Results show that the deeper treated area has less dose rate at the same beam
quality and quantity. Also it has been noted increasing in the field increasing in the
depth dose at the same depth even if the radiation energy is constant. Increasing in
radiation dose attribut