Improving the optoelectronic properties of titanium-doped indium tin oxide thin films
...Show More Authors
Intrinsic viscosities have been studied for polyethylene oxide in water which has wide industrial applications. The polyethylene oxide samples had two different structures, the first one was linear and covers a wide range of molecular weight of 1, 3, 10, 20, 35, 99, 370, 1100, 4600, and 8000 kg/mol and the second one was branched and had molecular weights of 0.55 and 40 kg/mol.
Intrinsic viscosities and Huggins constants have been determined for all types and molecular weights mentioned above at 25ºC using a capillary viscometer. The values of Mark-Houwink parameters (K and a) were equal to 0.0068 ml/g and 0.67 respectively, and have not been published for this range of molecular weight in as yet.
Copper with different concentrations doped with zinc oxide nanoparticles were prepared from a mixture of zinc acetate and copper acetate with sodium hydroxide in aqueous solution. The structure of the prepared samples was done by X-ray diffraction, atomic force microscopy (AFM) and UV-VIS absorption spectrophotometer. Debye-Scherer formula was used to calculate the size of the prepared samples. The band gap of the nanoparticle ZnO was determined by using UV-VIS optical spectroscopy.
Pure Polyaniline salt, and protonation PANI by H2SO4 were synthesized by electro-chemical oxidative polymerization of aniline with acidity of H2SO4. The solution was prepared in reaction temperature equal 291 K and the acidity of aqueous solution was 1 molarities. The prepared polyaniline was characterized by FT-IR, the result indicate that the intensity is increase with increasing of applied voltage. The dc conductivity has been measured for bulk polyaniline pure and doped in the form of compressed pellet with evaporated Ohmic Al electrodes in temperature range (303-423) K. The Eav energy of the thermal rate process of the electrical conductivity was determined. The results indicate that the dc conductivity of doped samples are two or t
... Show MoreBackground: Coated archwires have been introduced to improve esthetics during orthodontic treatment. Theaim of the present study was to evaluate and compare the load–deflection characteristics and force levels of six brands of coated nickel titanium orthodontic archwires using palatal and gingival deflection. Materials and methods: Ten round wires (0.016 inch) and ten rectangular wires (0.019x0.025 inch) were obtained from each of six brands (G&H, Opal, Ortho Technology, Dany, Hubit and Astar Companies). The load-deflection properties of these archwires were evaluated by the modified bending test usinga readymade dental arch model in both palatal and gingival directions at 37°C temperature using a universal material testing machi
... Show MoreIn this study, gold nanoparticle samples were prepared by the chemical reduction method (seed-growth) with 4 ratios (10, 12, 15 and 18) ml of seed, and the growth was stationary at 40 ml. The optical and structural properties of these samples were studied. The 18 ml seed sample showed the highest absorbance. The X- ray diffraction (XRD) patterns of these samples showed clear peaks at (38.25o, 44.5o, 64.4o, and 77.95o). The UV-visible showed that the absorbance of all the samples was in the same range as the standard AuNPs. The field emission-scanning electron microscope (FE-SEM) showed the shape of AuNPs as nanorods and the particle size between 30-50 nm. Rhodamine-610 (RhB) was prepared at 10<
... Show MoreThis research explores the preparation of polypyrrole (PPy) using chemical oxidation and its enhancement with graphene oxide (GO) for optical sensor applications. PPy was synthesized by polymerizing pyrrole monomers with ferric chloride (Fe2Cl3) as the oxidant. The resulting PPy was then combined with GO to form a composite material, aiming to improve its electrical and optical properties. Polypyrrole nanofibers were obtained and after adding graphene oxide, the sensitivity increased. Characterization techniques including UV-Vis spectroscopy, DC conductivity measurements, Field Emission Scanning Electron Microscopy (FESEM) and response of photocurrent analysis were employed. The incorporation of GO into PPy resulted in a significant reducti
... Show MoreThis research investigates the impact of varying concentrations of silver oxide on the structure and morphology of phosphate bioactive glass (PBG). PBGs are gaining popularity as a potential replacement for traditional silicate glasses in biomedical applications due to their adjustable chemical resistance and exceptional bioactivity. Upon examination of the scanning electron microscope of the composites without Ag2O, it was observed that the grains tended to merge together, and the surface particles appeared to be larger than those in composites with Ag2O at concentrations of 0.25, 0.5, and 0.75 wt%. The study found that the diffraction pattern of phosphate bioactive glass composites sintered without Ag2O showed the presence of Stro
... Show More