The Catharanthus roseus plant was extracted and converted to nanoparticles in this work. The Soxhlet method extracted alkaloid compounds from the plant Catharanthus roseus and converted them to the nanoscale. Chitosan polymer was used as a linking material and converted to Chitosan nanoparticles using Sodium TriPolyPhosphate (STPP). The extracted alkaloids were linked with Chitosan nanoparticles CSNPs by maleic anhydride to get the final product (CSNPs- Linker- alkaloids). The synthesized (CSNPs- Linker- alkaloids) was characterized using SEM spectroscopy UV–Vis., Zeta Potential, and HPLC High-Performance Liquid Chromatography. Scanning electron microscope (SEM) analysis shows that the Chitosan nanoparticles (CSNPs) have small dimensions with regular spherical and nanotube shapes of a diameter range of (49 - 70) nm. The final product (CSNPs- Linker- alkaloids) has two shapes (spherical particles and tubes) in nano dimensions and is close to each other compared to normal Chitosan. The absorption peaks for Chitosan (CS), Chitosan nanoparticles (CSNPs), Chitosan nanoparticles (CSNPs), and maleic anhydride revealed that converting Chitosan to Chitosan nanoparticles and mixing it with the plant extract, led to an increase in the absorption value and wavelength range. Also, the appearance of two peaks at 222 nm and 402 nm nano instead of the peak of Chitosan at 289.9 nm. Zeta Potential results of CSNPs- Linker- alkaloids showed that the extract of the nano-alkaloids bound to chitosan nanoparticles carries a positive charge of 54.4 mV. This surface charge is essential in maintaining the colloidal solution's stability in its natural form without changing. High-Performance Liquid Chromatography (HPLC) was used to estimate qualitative and quantitative plants extracted from Catharanthus roseus. Quantitative HPLC results show that Catharanthus roseus contains a good and acceptable concentration of Vinblastine, Vincristine, Vinorelbine, Vincamine, and Vintafolide (66.75, 242.91, 0.7, 83.77, 42.34) ppm respectively. The qualitative results show a good match for the influential groups of pure standard vincristine and alcoholic extract and dry powder of the Catharanthus roseus plant. The successful synthesis of nanoparticles from the Catharanthus roseus plant can be used in biosensors and biomedical applications.
Copper oxide thin films were synthesized by using spray pyrolysis deposition technique, in the temperature around 400°C in atmosphere from alcoholic solutions. Copper (II) chloride as precursor and glass as a substrate. The textural and structural properties of the films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD). The average particle size determined from the AFM images ranged from 30 to 90 nm and the roughness average was equal to 9.3 nm. The XRD patterns revealed the formation of a polycrystalline hexagonal CuO. The absorption and transmission spectrum, band gap, film thickness was investigated. The films were tested as an |
In this work, synthesis of conducting polymeric films namely, PVC thin films was carried out containing Schiff base (L) with Cu2+, Cr3+, Ni2+, Co2+, in addition to inspecting the possibilities of measuring energy gap values of PVC-L-M with variety metal ions. These new polymeric films (PVC-L-M) were characterized by FTIR spectrophotometry, energy gap and surface morphology. The optical data recorded that the band gap values are influenced by the type of metals. All modified films have a red shift in optical properties in the ultraviolet region. The PVC-L-Co(II) was the lowest value of the optical band gap, 3.1 eV.
The new bidentate ligand 2-amino-5-phenyl-1,3,4-oxadiazole (Apods) was prepared by the reaction of benzaldehyde semicarbazone with bromine and sodium acetate in acetic acid gave. The prepared ligand was identified by Microelemental Analysis, FT.IR, UV-Vis and 1HNMR spectroscopic techniqes. Treatment of the prepared ligand with the following selected metal ions (MnII, CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio, yielded a series of complexes of the general formula [M(L)2Cl2].The prepared complexes were characterized using flame atomic absorption, (C.H.N)Analysis, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by Mohr metho
... Show MoreMyrtle plant was washed, dried, and powdered after harvesting to produce a fine powder that was used in water treatment. created an alcoholic extract from the myrtle plant using ethanol, which was then analyzed using GC-Mass, Fourier Transform Infrared spectroscopy, and ultraviolet-visible spectroscopy to identify the active components. Zinc nanoparticles were created using alcoholic extract. We used FTIR, UV-Vis, SEM, EDX, and TEM to characterize zinc nanoparticles. Using a continuous processing procedure, zinc nanoparticles with myrtle extract and powder were employed to clean polluted water containing heavy metals.
Firstly used 2g with 20ml polluted water and the result was ( Fe 96.20%, Cr 84%, Pb 100%, Sb 93.70, Cd 100%, andCu
... Show MoreModified algae with nano copper oxide (CuO) were used as adsorption media to remove tetracycline (TEC) from aqueous solutions. Functional groups, morphology, structure, and percentages of surfactants before and after adsorption were characterised through Fourier-transform infrared (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). Several variables, including pH, connection time, dosage, initial concentrations, and temperature, were controlled to obtain the optimum condition. Thermodynamic studies, adsorption isotherm, and kinetics models were examined to describe and recognise the type of interactions involved. Resultantly, the best operation conditions were at pH 7, contact time
... Show MoreGreen nanotechnology is a thrilling and rising place of technology and generation that bracesthe ideas of inexperienced chemistry with ability advantages for sustainability, protection, andthe general protection from the race human. The inexperienced chemistry method introduces aproper technique for the production, processing, and alertness of much less dangerous chemicalsubstances to lessen threats to human fitness and the environment. The technique calls for inintensity expertise of the uncooked materials, particularly in phrases in their creation intonanomaterials and the resultant bioactivities that pose very few dangerous outcomes for peopleand the environment. In the twenty-first century, nanotechnology has become a systematic
... Show MoreGreen nanotechnology is a thrilling and rising place of technology and generation that braces
the ideas of inexperienced chemistry with ability advantages for sustainability, protection, and
the general protection from the race human. The inexperienced chemistry method introduces a
proper technique for the production, processing, and alertness of much less dangerous chemical
substances to lessen threats to human fitness and the environment. The technique calls for inintensity expertise of the uncooked materials, particularly in phrases in their creation into
nanomaterials and the resultant bioactivities that pose very few dangerous outcomes for people
and the environment. In the twenty-first century, nanotec
Current research included preparation, characterization of some new chitosan- hydroxy benzaldehyde-Schiff bases with maleic anhydride. The present study aimed to the synthesis and characterization of novel chitosan Schiff base compounds using para- hydroxy benzaldeh and maleic anhydride. The derivative of the schiff-chitosan base, which is associated with different drugs, has been replaced with different amino and hydroxy drugs. The derivative is characterized by different analytical techniques. The results of FT-IR studies clearly indicate construction of the chief amine group in chitosan and the emergence of new bands that correspond to the association of maleic anhydride with the chitosan base. TGA, 1
... Show More