The Catharanthus roseus plant was extracted and converted to nanoparticles in this work. The Soxhlet method extracted alkaloid compounds from the plant Catharanthus roseus and converted them to the nanoscale. Chitosan polymer was used as a linking material and converted to Chitosan nanoparticles using Sodium TriPolyPhosphate (STPP). The extracted alkaloids were linked with Chitosan nanoparticles CSNPs by maleic anhydride to get the final product (CSNPs- Linker- alkaloids). The synthesized (CSNPs- Linker- alkaloids) was characterized using SEM spectroscopy UV–Vis., Zeta Potential, and HPLC High-Performance Liquid Chromatography. Scanning electron microscope (SEM) analysis shows that the Chitosan nanoparticles (CSNPs) have small dimensions with regular spherical and nanotube shapes of a diameter range of (49 - 70) nm. The final product (CSNPs- Linker- alkaloids) has two shapes (spherical particles and tubes) in nano dimensions and is close to each other compared to normal Chitosan. The absorption peaks for Chitosan (CS), Chitosan nanoparticles (CSNPs), Chitosan nanoparticles (CSNPs), and maleic anhydride revealed that converting Chitosan to Chitosan nanoparticles and mixing it with the plant extract, led to an increase in the absorption value and wavelength range. Also, the appearance of two peaks at 222 nm and 402 nm nano instead of the peak of Chitosan at 289.9 nm. Zeta Potential results of CSNPs- Linker- alkaloids showed that the extract of the nano-alkaloids bound to chitosan nanoparticles carries a positive charge of 54.4 mV. This surface charge is essential in maintaining the colloidal solution's stability in its natural form without changing. High-Performance Liquid Chromatography (HPLC) was used to estimate qualitative and quantitative plants extracted from Catharanthus roseus. Quantitative HPLC results show that Catharanthus roseus contains a good and acceptable concentration of Vinblastine, Vincristine, Vinorelbine, Vincamine, and Vintafolide (66.75, 242.91, 0.7, 83.77, 42.34) ppm respectively. The qualitative results show a good match for the influential groups of pure standard vincristine and alcoholic extract and dry powder of the Catharanthus roseus plant. The successful synthesis of nanoparticles from the Catharanthus roseus plant can be used in biosensors and biomedical applications.
Increasing demands on producing environmentally friendly products are becoming a driving force for designing highly active catalysts. Thus, surfaces that efficiently catalyse the nitrogen reduction reactions are greatly sought in moderating air-pollutant emissions. This contribution aims to computationally investigate the hydrodenitrogenation (HDN) networks of pyridine over the γ-Mo2N(111) surface using a density functional theory (DFT) approach. Various adsorption configurations have been considered for the molecularly adsorbed pyridine. Findings indicate that pyridine can be adsorbed via side-on and end-on modes in six geometries in which one adsorption site is revealed to have the lowest adsorption energy (
... Show MoreAlkaloids are regarded as important nitrogen-containing chemical compounds that serve as a rich source for discovering and developing new drugs where most plant-origin alkaloids have antiproliferation effects on different kinds of cancers. Alkaloids’ continence of Calotropis procera leaves are detected by two biochemical alkaloid reagents. Also GC-MS analysis for leaf alkaloid extract was done that showed the existence of one type of alkaloid compound at retention time12.8min detected as colchicine (C22H25N06( by comparing it with colchicine standard reference (Sigma Aldrich) with M.wt 399g/mol and percentage area 7.1%. Furthermore, identification, separation, and purification
... Show MoreNano-crystalline iron oxide nanoparticles (magnetite) was synthesized by open vessel ageing process. The iron chloride solution was prepared by mixing deionized water and iron chloride tetrahydrate. The product was characterized by X-Ray, Surface area and pore volume by Brunauer-Emmet-Teller, Atomic Force Microscope (AFM) and Fourier Transform Infrared Spectroscopy(FTIR) . The results showed that the XRD in compatibility of the prepared iron oxide (magnetite) with the general structure of standard iron oxide, and in Fourier Transform Infrared Spectroscopy, it is strong crests in 586 bands, because of the expansion vibration manner related to the metal oxygen absorption band (Fe–O bonds in the crystals of iron ox
... Show MoreThe relationship between pollution levels in river sediment and fluctuating asymmetry of resident silurid fish species,