The Catharanthus roseus plant was extracted and converted to nanoparticles in this work. The Soxhlet method extracted alkaloid compounds from the plant Catharanthus roseus and converted them to the nanoscale. Chitosan polymer was used as a linking material and converted to Chitosan nanoparticles using Sodium TriPolyPhosphate (STPP). The extracted alkaloids were linked with Chitosan nanoparticles CSNPs by maleic anhydride to get the final product (CSNPs- Linker- alkaloids). The synthesized (CSNPs- Linker- alkaloids) was characterized using SEM spectroscopy UV–Vis., Zeta Potential, and HPLC High-Performance Liquid Chromatography. Scanning electron microscope (SEM) analysis shows that the Chitosan nanoparticles (CSNPs) have small dimensions with regular spherical and nanotube shapes of a diameter range of (49 - 70) nm. The final product (CSNPs- Linker- alkaloids) has two shapes (spherical particles and tubes) in nano dimensions and is close to each other compared to normal Chitosan. The absorption peaks for Chitosan (CS), Chitosan nanoparticles (CSNPs), Chitosan nanoparticles (CSNPs), and maleic anhydride revealed that converting Chitosan to Chitosan nanoparticles and mixing it with the plant extract, led to an increase in the absorption value and wavelength range. Also, the appearance of two peaks at 222 nm and 402 nm nano instead of the peak of Chitosan at 289.9 nm. Zeta Potential results of CSNPs- Linker- alkaloids showed that the extract of the nano-alkaloids bound to chitosan nanoparticles carries a positive charge of 54.4 mV. This surface charge is essential in maintaining the colloidal solution's stability in its natural form without changing. High-Performance Liquid Chromatography (HPLC) was used to estimate qualitative and quantitative plants extracted from Catharanthus roseus. Quantitative HPLC results show that Catharanthus roseus contains a good and acceptable concentration of Vinblastine, Vincristine, Vinorelbine, Vincamine, and Vintafolide (66.75, 242.91, 0.7, 83.77, 42.34) ppm respectively. The qualitative results show a good match for the influential groups of pure standard vincristine and alcoholic extract and dry powder of the Catharanthus roseus plant. The successful synthesis of nanoparticles from the Catharanthus roseus plant can be used in biosensors and biomedical applications.
In this work, of New Ligand [(E)-5-hydroxy-4-(3-(4-methoxy phenyl) acryl amido) naphthalene -1- sulfonic acid] (ANS) was prepared by reflexing reaction of 4-amino-5-hydroxy naphthalene sulfonic acid with para methoxy cinnamic acid, this produced and described chemical was employed as ligand to prepare tri and di-organotin complexes by condensation reaction with the salts of organotin chloride (phenyl, butyl, and methyl tin chloride). Specialized methods, including elemental analysis, (tin and proton) magnetic resonance, and infrared spectra, were used to identify the complexes. DPPH (2,2-diphenyl-1-picrylhydrazyl) and CUPRAC (Cupric Reducing Antioxidant Capacity) are both commonly used methods for measuring antioxidant capacity in v
... Show MoreInthis study new derivatives of Schiff bases and nucleoside analogues have been synthesized from the starting material D-glucose after a series of reactions. Derivative 1 was prepared from D-glucose then react with P-bromoacetophenone gave derivative 2 was reacted with dimethyl sulfoxide and acetic anhydride for dehydration a molecule of water gave 3. The spiro ring was prepared at 3-position from the reaction of 3 derivative with 1-phenyl-2–thioureagave 4. The protection group at 1 position was removed by using acetic acid fllowed by periodate oxidation to obtain 6. Reaction of 6 with hydrazide derivative at once and dtriazole derivative at another gave 8 and 9 respectively. Compound 6 was reduced to gave derivative 7. The 1-hydroxylgrou
... Show MoreSynthesis of a new class of Schiff-base ligand with a tetrazole moiety to form polymeric metal complexes with CoII, NiII, ZnII, and CdII ions has been demonstrated. The ligand was synthesised by a multi-steps by treating 5-amino-2-chlorobenzonitrile and cyclohexane -1,3-dione, the 5,5'-(((1E,3E)-cyclohexane-1,3-diylidene)bis(azanylylidene))bis(2-chlorobenzonitrile) was obtained. The precursor (M) was prepared from the reaction 5,5'-(((1E,3E)-cyclohexane-1,3-diylidene)bis(azanylylidene))bis(2-chlorobenzonitrile) with NaN3 to obtained (1E,3E)-N1,N3-bis(4-chloro-3-(1H-tetrazol-5-yl)phenyl)cyclohexane-1,3-diimine (N). By reacting the precursor (M) with CS2
... Show MoreIn this work, Schiff base ligands L1: N, N-bis (2-hydroxy-1-naphthaldehyde) hydrazine, L2: N, N-bis (salicylidene) hydrazine, and L3:N –salicylidene- hydrazine were synthesized by condensation reaction. The prepared ligands were reacted with specific divalent metal ions such as (Mn2+, Fe2+, Ni2+) to prepare their complexes. The ligands and complexes were characterized by C.H.N, FT-IR, UV-Vis, solubility, melting point and magnetic susceptibility measurements. The results show that the ligands of complexes (Mn2+, Fe2+) have octahedral geometry while the ligands of complexes (Ni2+) have tetrahedral geometry.
The ligand 4-amino-N-(5-methylisoxazole-3-yl)-benzene-sulfonamide(L1) (as a chelating ligand) was treated with Pd(II),Pt (IV) and Au(III) ions in alcoholic medium in order to prepare a series of new metal complexes. Mixed ligand complexes of this primary ligand were prepared in alcoholic medium in presence of the co-ligand 4,4'-dimethyl-2,2'-bipyridyl(L2) with Cu(II) ,Pd(II) and Au(III) ions. The complexes were characterized in solid state using flame atomic absorption, elemental analysis C.H.N.S, FT-IR, UV-Vis Spectroscopy, conductivity and magnetic susceptibility measurements. The nature of some complexes formed in ethanolic solution has been studied following the molar ratio method, also stability constant was studied and the complexes f
... Show More2,2'-(1-(3,4-bis(carboxydichloromethoxy)-5-oxo-2,5-dihydrofuran-2-yl)ethane-1,2-diyl)bis(oxy)bis(2,2-dichloroacetic acid) a derivative of L-ascorbic acid was prepared by reaction of L-ascorbic acid with trichloroacetic acid (1:4) ratio, in the presence of potassium hydroxide. A series of new metal complexes of this ligand were prepared by a reaction with the chlorides of Cd(II), Co(II), Ni(II), Cu(II) and Zn(II). The new ligand and its complexes were identified by C.H.N., IR, UV-visible spectra, Thermogravimetric analysis (TGA), as well as 1H, 13C-NMR and Mass spectra for ligand L. The complexes were also identified by molar conductance, atomic absorption, magnetic susceptibility and X-ray diffraction for Cu (II) complex. FT-IR spectra
... Show More