In aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we trained the proposed domain-trained word embeddings (Dt-WE) model using explicit and implicit aspects. Second, interpolate Dt-WE model as a front layer in Bi-LSTM. Finally, extract implicit aspects by testing the trained architecture using the opinionated reviews that comprise multiple implicit aspects. Our model outperforms several of the current methods for implicit aspect extraction.
This work was conducted to study the extraction of pelletierine sulphate from Punica granatum L. roots by liquid membrane techniques. Pelletierine sulphate is used widely in medicine. The general behavior of extraction process indicates that pelletierine conversion increased with increasing the number of stages and the discs rotation speed but high rotation speed was not favored because of the increased risk of droplet formation during the operation. The pH of feed and acceptor solution was also important. The results exhibit that the highest pelletierine conversion was obtained when using two stages, (10 rpm) discs speed of stainless steel discs, (pH=9.5) of feed solution and (pH=2) of acceptor solution in n-decane. Assuming the existen
... Show MoreLipase enzyme has attracted a lot of attention in recent years because of its diverse biotechnological applications. The present study was conducted to screen germinated seeds of four crops, namely sunflower (Helianthus annuus), flaxor linseed (Linum usitatissimum ), peanut (Arachis hypogaea ) and castor bean (Ricinus communis), for the activity of their lipases. to the study also included the extraction and purification of lipase from the seeds of the most promising crop using different solvents. The results indicated that the maximum enzymatic activity (0.669 U/ml) was obtained when 0.1 M Tris-HCl buffer extract was used after 3 days of seed germination of all the tested species, as compared to the other test solvents
... Show MoreThis work presents the modeling of the electrical response of monocrystalline photovoltaic module by using five parameters model based on manufacture data-sheet of a solar module that measured in stander test conditions (STC) at radiation 1000W/m² and cell temperature 25 . The model takes into account the series and parallel (shunt) resistance of the module. This paper considers the details of Matlab modeling of the solar module by a developed Simulink model using the basic equations, the first approach was to estimate the parameters: photocurrent Iph, saturation current Is, shunt resistance Rsh, series resistance Rs, ideality factor A at stander test condition (STC) by an ite
... Show MoreThis work reports the development of an analytical method for the simultaneous analysis of three fluoroquinolones; ciprofloxacin (CIP), norfloxacin (NOR) and ofloxacin (OFL) in soil matrix. The proposed method was performed by using microwave-assisted extraction (MAE), solid-phase extraction (SPE) for samples purification, and finally the pre-concentrated samples were analyzed by HPLC detector. In this study, various organic solvents were tested to extract the test compounds, and the extraction performance was evaluated by testing various parameters including extraction solvent, solvent volume, extraction time, temperature and number of the extraction cycles. The current method showed a good linearity over the concentration ranging from
... Show MoreThere is a great operational risk to control the day-to-day management in water treatment plants, so water companies are looking for solutions to predict how the treatment processes may be improved due to the increased pressure to remain competitive. This study focused on the mathematical modeling of water treatment processes with the primary motivation to provide tools that can be used to predict the performance of the treatment to enable better control of uncertainty and risk. This research included choosing the most important variables affecting quality standards using the correlation test. According to this test, it was found that the important parameters of raw water: Total Hardn
This research dealt with the impact of internal control on tax performance using balanced scorecard indicators because of its special importance in improving tax performance and reform. The internal control system is a safety valve for senior management in all organizations, it plays an important role in the regularity and development of work and the fight against corruption To provide reliable and accurate data and information, follow up on compliance with laws, regulations and instructions. The aim of this research is to demonstrate how control affects tax performance and how to adapt internal control components to improve tax performance. In the General Authority for taxes and its branches,. The research resulted in a number of conclu
... Show MoreThe present study develops the sorption model for simulating the effects of pH and temperature on the uptake of cadmium from contaminated water using waste foundry sand (WFS) by allowing the variation of the maximum adsorption capacity and affinity constant. The presence of two acidic functional groups with the same or different affinity is the basis in the derivation of the two models; Model 1 and Model 2 respectively. The developed Bi-Langmuir model with different affinity (Model 2) has a remarkable ability in the description of process under consideration with coefficient of determination > 0.9838 and sum of squared error < 0.08514. This result is proved by FTIR test where the weak acids responsible of cadmium ions removal
... Show MoreBreast cancer is the most common malignancy in female and the most registered cause of women’s mortality worldwide. BI-RADS 4 breast lesions are associated with an exceptionally high rate of benign breast pathology and breast cancer, so BI-RADS 4 is subdivided into 4A, 4B and 4C to standardize the risk estimation of breast lesions. The aim of the study: to evaluate the correlation between BI-RADS 4 subdivisions 4A, 4B & 4C and the categories of reporting FNA cytology results. A case series study was conducted in the Oncology Teaching Hospital in Baghdad from September 2018 to September 2019. Included patients had suspicious breast findings and given BI-RADS 4 (4A, 4B, or 4C) in the radiological report accordingly. Fine needle aspirati
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show More