In aspect-based sentiment analysis ABSA, implicit aspects extraction is a fine-grained task aim for extracting the hidden aspect in the in-context meaning of the online reviews. Previous methods have shown that handcrafted rules interpolated in neural network architecture are a promising method for this task. In this work, we reduced the needs for the crafted rules that wastefully must be articulated for the new training domains or text data, instead proposing a new architecture relied on the multi-label neural learning. The key idea is to attain the semantic regularities of the explicit and implicit aspects using vectors of word embeddings and interpolate that as a front layer in the Bidirectional Long Short-Term Memory Bi-LSTM. First, we trained the proposed domain-trained word embeddings (Dt-WE) model using explicit and implicit aspects. Second, interpolate Dt-WE model as a front layer in Bi-LSTM. Finally, extract implicit aspects by testing the trained architecture using the opinionated reviews that comprise multiple implicit aspects. Our model outperforms several of the current methods for implicit aspect extraction.
This study aims at evaluating the performance of MA students in the College of Education for Women in using the digital transformation and identifying the significant difference in performance evaluation according to the variable of academic qualification (Master or PHD). In order to achieve the aim of the research the researcher prepared a questionnaire of 20 items, and this happens after the researcher's getting acquaintance of the literature of previous studies related to the variable of the research. The apparent validity of the items was examined by exposing them to 10 juries specialized in education, psychology and evaluation and measurement. The stability of the items was examined via two methods, the test-repetition and half-divisio
... Show MoreThe Electric Discharge (EDM) method is a novel thermoelectric manufacturing technique in which materials are removed by a controlled spark erosion process between two electrodes immersed in a dielectric medium. Because of the difficulties of EDM, determining the optimum cutting parameters to improve cutting performance is extremely tough. As a result, optimizing operating parameters is a critical processing step, particularly for non-traditional machining process like EDM. Adequate selection of processing parameters for the EDM process does not provide ideal conditions, due to the unpredictable processing time required for a given function. Models of Multiple Regression and Genetic Algorithm are considered as effective methods for determ
... Show MoreThe aim of this study is to investigate the kinetics of copper removal from aqueous solutions using an electromembrane extraction (EME) system. To achieve this, a unique electrochemical cell design was adopted comprising two glass chambers, a supported liquid membrane (SLM), a graphite anode, and a stainless-steel cathode. The SLM consisted of a polypropylene flat membrane infused with 1-octanol as a solvent and bis(2-ethylhexyl) phosphate (DEHP) as a carrier. The impact of various factors on the kinetics constant rate was outlined, including the applied voltage, initial pH of the donor phase solution, and initial copper concentration. The results demonstrated a significant influence of the applied voltage on enhancing the rate of c
... Show MoreLiterature on the use of the first-person pronoun in abstracts and conclusion sections of final-year projects is limited. In case of Algerian Master students, it is too scant. The present paper aims at filling this gap through a study concerned with students’ and engagement in their final projects (memoirs). This quantitative study examines the use of “we” and its various types, “our- us-I, my, the researcher” in memoirs chosen at random from the d-space portal of the University of Adrar, southern Algeria. Sixty-five papers, submitted in the fields of Linguistics or didactics between 2015 and 2020 and representing nearly half of the whole memoirs’ depository at the library’s d-space, constituted the corpus of study. The des
... Show MoreThis paper deals with testing a numerical solution for the discrete classical optimal control problem governed by a linear hyperbolic boundary value problem with variable coefficients. When the discrete classical control is fixed, the proof of the existence and uniqueness theorem for the discrete solution of the discrete weak form is achieved. The existence theorem for the discrete classical optimal control and the necessary conditions for optimality of the problem are proved under suitable assumptions. The discrete classical optimal control problem (DCOCP) is solved by using the mixed Galerkin finite element method to find the solution of the discrete weak form (discrete state). Also, it is used to find the solution for the discrete adj
... Show MoreThe study aimed to investigate the effect of different times as follows 0.5, 1.00, 2.00 and 3.00 hrs, type of solvent (acetone, methanol and ethanol) and temperature (~ 25 and 50)ºc on curcumin percentage yield from turmeric rhizomes. The results showed significant differences (p? 0.05) in all variables. The curcumin content which were determined spectrophotometrically ranged between (0.55-2.90) %. The maximum yield was obtained when temperature, time and solvent were 50ºC, 3 hrs and acetone, respectively.
Image classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreGingival crevicular fluid (GCF) may reflect the events associated with orthodontic tooth movement. Attempts have been conducted to identify biomarkers reflecting optimum orthodontic force, unwanted sequallea (i.e. root resorption) and accelerated tooth movement. The aim of the present study is to find out a standardized GCF collection, storage and total protein extraction method from apparently healthy gingival sites with orthodontics that is compatible with further high-throughput proteomics. Eighteen patients who required extractions of both maxillary first premolars were recruited in this study. These teeth were randomly assigned to either heavy (225g) or light force (25g), and their site specific GCF was collected at baseline and aft
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show More