In this research, a novel thin film Si-GO10 and nanopowders Si-GO30 of silica-graphene oxide (GO) composite were prepared via the sol–gel method and deposited on glass substrates using spray pyrolysis. X-ray diffraction (XRD) results showed a relatively strong peak in the graphite layer that corresponds to the (002) plane. Transmission electron microscope (TEM) images showed that SiO2 nanoparticles were randomly distributed on the surface of GO plates, and the particle size in these nanopowders was below 50 nm. Field emission scanning electron microscopy (FESEM) analysis demonstrated that silica nanoparticles on the surface of GO plates exhibited almost spherical and rod-like nanoparticle shape, which in turn confirmed the formation of SiO2–GO nano-hybrids. Photocatalytic investigations revealed that the composite materials exhibit high activity for dye adsorption and decomposition. Si-GO10 thin film did not undergo degradation after 120 min; however, for Si-GO30 nanopowder, the adsorption peak intensity was reduced to 665 nm, indicating a decrease in the dye concentration in the solution. Fourier transform infrared scan (FTIR) analysis demonstrated that carboxylic functional groups are decreased by increasing silica particles. Photoluminescence (PL) spectrum in Si-GO10 thin film showed a sharp emission peak at about 665 nm. This spectrum completely disappeared in Si-GO30 nanopowders. Results of the antibacterial properties emphasized that Si-GO30 nanoparticle would prevent Escherichia coli growth after 20 h. The presented methodology allows for the synthesis of GO supported silicon dioxide nanoparticles for promising applications in photocatalytic and antibacterial fields.
Background: The isatin molecule is present in many natural substances, including plants and animals, and is used to prepare compounds with various biological activities. Objectives: To synthesize a new series of isatin derivatives with the expectation that they will have antimicrobial activity. Methods: Thiazole Schiff bases were synthesized from various Mannich bases of isatin to evaluate their antimicrobial properties. Initially, Mannich bases (2a–e) were synthesized by reacting isatin with formaldehyde and different secondary amines. Subsequently, they were treated with 2-aminothiazole to yield the final compounds (3a–e). Spectroscopic characterization was done via FT-IR and 1H-NMR. The antimicrobial screening was conducted o
... Show MoreNew (pentulose-?-lactone-2,3-enedibenzoate barbituric acid) (L) have been synthesized by reaction of (5-C-dimethyl malonyl-pentulose-?-lactone-2,3-enedibenzoate) with urea in alkaline media (sodium methoxide). (Ca+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2 and Hg+2) complexes of (pentulose-?-lactone-2,3-enedibenzoate barbituric acid) (L) have been prepared and characterized by (1H and 13CNMR), FTIR, (U.V-Vis) spectroscopy, Atomic absorption spectrophotometer (A.A.S), Molar conductivity measurements and Magnetic moment measurements, and the following general formula has been given for the prepared complexes [MLCl2(H2O)].XH2O, where M = (Ca+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2, Hg+2), X = five molecules with (Cd+2) complex, L = (pentulose-?-lactone-2,3
... Show More. New Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((ІІ), Co(ІІ), Ni(ІІ), Cu(ІІ), Zn(ІІ) and Cd(ІІ) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic m
... Show MoreExperimental measurements of viscosity and thermal conductivity of single layer of graphene . based DI-water nanofluid are performed as a function of concentrations (0.1-1wt%) and temperatures between (5 to 35ºC). The result reveals that the thermal conductivity of GNPs nanofluids was increased with increasing the nanoparticle weight fraction concentration and temperature, while the maximum enhancement was about 22% for concentration of 1 wt.% at
35ºC. These experimental results were compared with some theoretical models and a good agreement between Nan’s model and the experimental results was observed. The viscosity of the graphene nanofluid displays Newtonian and Non-Newtonian behaviors with respect to nanoparticles concen
A Ligand (ECA) methyl 2-((1-cyano-2-ethoxy-2-oxoethyl)diazenyl)benzoate with metals of (Co2+, Ni2+, Cu2+) were prepared and characterization using H-NMR, atomic absorption spectroscopy, ultra violet (UV) visible, magnetic moments measurements, bioactivity, and Molar conductivity measurements in soluble ethanol. Complexes have been prepared using a general formula which was suggested as [M (ECA)2] Cl2, where M = (Cobalt(II), Nickel(II) and Copper(II), the geometry shape of the complexes is octahedral.
This work includes the synthesis of new ester compounds containing two 1,3,4-oxadiazole rings, 15a-c and 16a-c. This was done over seven steps, starting with p-acetamido-phenol 1 and 2-mercaptobenzoimidazole 2. The structure of the products was determined using FT-IR, 1H NMR, and mass spectroscopy. The evaluation of the antimicrobial activities of some prepared compounds was achieved against four types of bacteria (two types of gram-positive bacteria; Staphylococcus aureus and Bacillus subtilis, and two types of gram-negative bacteria, Pseudomonas aeruginosa and E. Coli), as well as against one types of fungus (C. albino). The results show moderate activit against the study bacteria, and the theoretical analysis of the toxi
... Show MoreReaction of  p-fluoro benzoic acid with the thiosemicarbazide and salcialdehyde gave the new bidentate ligand .The prepared ligand Identified by FT-I.R and U.V-Visible spectcopic technique .Treatment of the prepared   ligand   with following metal ions  M=Tb(III),Eu(III),Nd(III) and La(III) ,in ethanol with a (1:1) M:L ratio and at pH=7 yielded series of neutral complexes as the general formula  [M LCl (H O ]. The prepared complexes were characterized using (FT-IR, UV-Vis) spectra , melting point, molar conductivity measurements . chloride ion content were also evolution by (mhor method) . The proposed structure of the complexes using program , chem office 3D(2004) .
All new compounds synthesized by many reactions starting from a product the compounds [I]a,b from reaction of 3-phenylenediamine or 4-phenylenediamine with chloroacetyl chloride, then the compounds [I]a,b reacted with potassium thiocyanate to yield compounds [II]a,b. While the compounds[III]a,b yield from reacted the compounds [I]a,b with sodium azide then the compounds [III]a,b reacted 1,3-dipolar cycloaddition reaction with acrylic acid to give compounds [IV]a,b and the later compounds reacted with phenylene diamine to product benzimidazole compounds [V]a,b . In addition to synthesized acid chloride compounds [VI]a,b by reacted the compounds [IV]a,b with thionyl chloride .Finally reacted the compounds [VI]a,b with different aromatic amine
... Show More1-[4-(4-Acetyl-2-hydroxy-phenylazo)-phenyl]-ethanone (L1) and 1-[3-Hydroxy-4(4-nitro-phenylazo)-phenyl]-ethanone (L2) were readied by combination the diazonium salts of amines with 3-hydroxyacetophenone. (C.H.N) analyses, infrared spectra, UV–vis electronic absorption spectra, 1H and 13CNMR spectral mechanisms are use to identified of the ligands. Complexes of Ni+2 and Cu+2 were performed as well depicted. The formation of complexes has been identified by using atomic absorption of flame, elemental analysis, infrared spectra and UV-Vis spectral process as well conductivity and magnetic quantifications. Nature of compounds produced have been studied obeyed the mole ratio and continuous contrast methods, Beer's law followed during a concent
... Show More