Preferred Language
Articles
/
24aXqIYBIXToZYAL7aJn
Experimental and Theoretical Analysis of a Mono PV Cell with Five Parameters, Simulation Model Compatible with Iraqi Climate
...Show More Authors

The present work included study of the effects of weather conditions such as solar radiation and  ambient temperature on solar panels (monocrystalline 30 Watts) via proposed mathematical model, MATLAB_Simulation was used by scripts file to create a special code to solve the mathematical model , The latter is single –diode model (Five parameter) ,Where the effect of ambient temperature and solar radiation on the output of the solar panel was studied, the Newton Raphson method was used to find the  output current of the solar panel and plot P-V ,I-V curves, the performance of the PV was determined at Standard Test Condition (STC) (1000W/m2)and a comparison between theoretical and experimental results were done .The best efficiency  ranging from 0.15 to 0.16. With a particularly, error about (-0.333) for experimental power (30 Watt) comparing with theoretical power (30.1), through these results it is concluded the validity of the proposed model. This model can be used for all types of photovoltaic panels and also with larger output power.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Feb 01 2021
Journal Name
Iop Conference Series: Materials Science And Engineering
On modelling and adaptive control of a linear smart beam model interacting with fluid
...Show More Authors
Abstract<p>This paper deals with modelling and control of Euler-Bernoulli smart beam interacting with a fluid medium. Several distributed piezo-patches (actuators and/or sensors) are bonded on the surface of the target beam. To model the vibrating beam properly, the effect of the piezo-patches and the hydrodynamic loads should be taken into account carefully. The partial differential equation PDE for the target oscillating beam is derived considering the piezo-actuators as input controls. Fluid forces are decomposed into two components: 1) hydrodynamic forces due to the beam oscillations, and 2) external (disturbance) hydrodynamic loads independent of beam motion. Then the PDE is discretized usi</p> ... Show More
View Publication
Crossref
Publication Date
Sat Aug 01 2020
Journal Name
Jordan Journal Of Physics
Theoretical Simulation of Backscattering Electron Coefficient for SixGe1-x/Si Heterostructure as a Function of Primary Electron Beam Energy and Ge Concentration
...Show More Authors

Abstract: This study aims to investigate the backscattering electron coefficient for SixGe1-x/Si heterostructure sample as a function of primary electron beam energy (0.25-20 keV) and Ge concentration in the alloy. The results obtained have several characteristics that are as follows: the first one is that the intensity of the backscattered signal above the alloy is mainly related to the average atomic number of the SixGe1-x alloy. The second feature is that the backscattering electron coefficient line scan shows a constant value above each layer at low primary electron energies below 5 keV. However, at 5 keV and above, a peak and a dip appeared on the line scan above Si-Ge alloy and Si, respectively, close to the interfacing line

... Show More
View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue Oct 08 2002
Journal Name
Iraqi Journal Of Laser
Study of Laser Propagation Parameters in the Underdense Plasma Region Using a Two Dimensional Simulation Code
...Show More Authors

The propagation of laser beam in the underdense deuterium plasma has been studied via computer simulation using the fluid model. An appropriate computer code “HEATER” has been modified and is used for this purpose. The propagation is taken to be in a cylindrical symmetric medium. Different laser wavelengths (1 = 10.6 m, 2 = 1.06 m, and 3 = 0.53 m) with a Gaussian pulse type and 15 ns pulse widths have been considered. Absorption energy and laser flux have been calculated for different plasma and laser parameters. The absorbed laser energy showed maximum for  = 0.53 m. This high absorbitivity was inferred to the effect of the pondermotive force.

View Publication Preview PDF
Publication Date
Sun Aug 03 2025
Journal Name
Journal Of Molecular Structure
Synergistic design of carbazole-bearing (D–π)₂-D–π–A architectures for dye-sensitized solar cells: Experimental and theoretical evaluations
...Show More Authors

Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Numerical Simulation of flow in pipe with cross jet effects
...Show More Authors

A numerical method is developed to obtain two-dimensional velocity and pressure distribution through a cylindrical pipe with cross jet flows. The method is based on solving partial differential equations for the conservation of mass and momentum by finite difference method to convert them into algebraic equations. This well-known problem is used to introduce the basic concepts of CFD including: the finite- difference mesh, the discrete nature of the numerical solution, and the dependence of the result on the mesh refinement. Staggered grid implementation of the numerical model is used. The set of algebraic equations is solved simultaneously by “SIMPLE” algorithm to obtain velocity and pressure distribution within a pipe. In order to

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Dec 02 2023
Journal Name
Journal Of Engineering
Simulation and Experimental Investigation of Performance and Flow Behavior for Steam Ejector Refrigeration System
...Show More Authors

The ejector refrigeration system is a desirable choice to reduce energy consumption. A Computational Fluid Dynamics CFD simulation using the ANSYS package was performed to investigate the flow inside the ejector and determine the performance of a small-scale steam ejector. The experimental results showed that at the nozzle throat diameter of 2.6 mm and the evaporator temperature of 10oC, increasing boiler temperature from 110oC to 140oC decreases the entrainment ratio by 66.25%. At the boiler temperature of 120oC, increasing the evaporator temperature from 7.5 to 15 oC increases the entrainment ratio by 65.57%. While at the boiler temperature of 120oC and

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Jun 10 2021
Journal Name
Neuroquantology
Direct Yellow 8 Azo Removal by Bentonite Clay Solution: Experimental and Theoretical Studies
...Show More Authors

In the theoretical part, removal of direct yellow 8 (DY8) from water solution was accomplished using Bentonite Clay as an adsorbent. Under batch adsorption, the adsorption was observed as a function of contact time, adsorbent dosage, pH, and temperature. The equilibrium data were fitted with the Langmuir and Freundlich adsorption models, and the linear regression coefficient R2 was used to determine the best fitting isotherm model. thermodynamic parameters of the ongoing adsorption mechanism, such as Gibb's free energy, enthalpy, and entropy, have also been measured. The batch method was also used for the kinetic calculations, and the day's adsorption assumes first-order rate kinetics. The kinetic studies also show that the intrapar

... Show More
View Publication
Scopus Crossref
Publication Date
Thu May 30 2024
Journal Name
Iraqi Journal Of Science
Lipid Profile Parameters and Adipokines among Adolescents Infected with Toxoplasmosis
...Show More Authors

The lipid profile and adipokines of an adolescent may be affected by some parasite infections. Recently, it has been discovered that these parasites are connected to body mass index (BMI), lipids and adipokines. The current study, therefore, aimed to specify how Toxoplasma gondii (T. gondii) affect BMI, lipid profile and adipokines. This study was conducted in Al Madain hospital, Baghdad from October to December 2022. An ELISA test was performed to examine the anti-T. gondii IgG and IgM for a group of adolescents attending the hospital. Based on this examination ninety adolescents were chosen to be involved in the study. They were separated in to two groups: individuals who tested positive for the parasite (n=45) and those who teste

... Show More
Scopus (1)
Scopus Crossref
Publication Date
Wed Aug 15 2018
Journal Name
Al-khwarizmi Engineering Journal
Experimental and Simulation investigations of Micro Flexible Deep Drawing Using Floating Ring Technique
...Show More Authors

Micro metal forming has an application potential in different industrial fields. Flexible tool-assisted sheet metal forming at micro scale is among the forming techniques that have increasingly attracted wide attention of researchers. This forming process is a suitable technique for producing micro components because of its inexpensive process, high quality products and relatively high production rate. This study presents a novel micro deep drawing technique through using floating ring as an assistant die with flexible pad as a main die. The floating ring designed with specified geometry is located between the process workpiece and the rubber pad. The function of the floating ring in this work is to produce SS304 micro cups with profile

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Dec 31 2015
Journal Name
Al-khwarizmi Engineering Journal
Experimental Study and Numerical Simulation of Sheet Hydroforming Process for Aluminum Alloy AA5652
...Show More Authors

 Abstract   

Lightweight materials is used in the sheet metal hydroforming process,  because it can be adapted to the manufacturing of complex structural components into a single body with high structural stiffness. Sheet hydroforming has been successfully developed in industry such as in the manufacturing of the components of automotive.The aim of this study is to simulate the experimental results ( such as the amount of pressure required to hydroforming process, stresses, and strains distribution)  with results  of finite element analyses (FEA)  (ANSYS 11)  for aluminum alloy (AA5652) sheets with  thickness (1.2mm) before heat treatm

... Show More
View Publication Preview PDF