Pavement crack and pothole identification are important tasks in transportation maintenance and road safety. This study offers a novel technique for automatic asphalt pavement crack and pothole detection which is based on image processing. Different types of cracks (transverse, longitudinal, alligator-type, and potholes) can be identified with such techniques. The goal of this research is to evaluate road surface damage by extracting cracks and potholes, categorizing them from images and videos, and comparing the manual and the automated methods. The proposed method was tested on 50 images. The results obtained from image processing showed that the proposed method can detect cracks and potholes and identify their severity levels with a medium validity of 76%. There are two kinds of methods, manual and automated, for distress evaluation that are used to assess pavement condition. A committee of three expert engineers in the maintenance department of the Mayoralty of Baghdad did the manual assessment of a highway in Baghdad city by using a Pavement Condition Index (PCI). The automated method was assessed by processing the videos of the road. By comparing the automated with the manual method, the accuracy percentage for this case study was 88.44%. The suggested method proved to be an encouraging solution for identifying cracks and potholes in asphalt pavements and sorting their severity. This technique can replace manual road damage assessment.
One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show More<p>In this paper, a simple color image compression system has been proposed using image signal decomposition. Where, the RGB image color band is converted to the less correlated YUV color model and the pixel value (magnitude) in each band is decomposed into 2-values; most and least significant. According to the importance of the most significant value (MSV) that influenced by any simply modification happened, an adaptive lossless image compression system is proposed using bit plane (BP) slicing, delta pulse code modulation (Delta PCM), adaptive quadtree (QT) partitioning followed by an adaptive shift encoder. On the other hand, a lossy compression system is introduced to handle the least significant value (LSV), it is based on
... Show MoreThe study focuses on assessment of the quality of some image enhancement methods which were implemented on renal X-ray images. The enhancement methods included Imadjust, Histogram Equalization (HE) and Contrast Limited Adaptive Histogram Equalization (CLAHE). The images qualities were calculated to compare input images with output images from these three enhancement techniques. An eight renal x-ray images are collected to perform these methods. Generally, the x-ray images are lack of contrast and low in radiation dosage. This lack of image quality can be amended by enhancement process. Three quality image factors were done to assess the resulted images involved (Naturalness Image Quality Evaluator (NIQE), Perception based Image Qual
... Show MoreDeveloping an efficient algorithm for automated Magnetic Resonance Imaging (MRI) segmentation to characterize tumor abnormalities in an accurate and reproducible manner is ever demanding. This paper presents an overview of the recent development and challenges of the energy minimizing active contour segmentation model called snake for the MRI. This model is successfully used in contour detection for object recognition, computer vision and graphics as well as biomedical image processing including X-ray, MRI and Ultrasound images. Snakes being deformable well-defined curves in the image domain can move under the influence of internal forces and external forces are subsequently derived from the image data. We underscore a critical appraisal
... Show MoreThe confirming of security and confidentiality of multimedia data is a serious challenge through the growing dependence on digital communication. This paper offers a new image cryptography based on the Chebyshev chaos polynomials map, via employing the randomness characteristic of chaos concept to improve security. The suggested method includes block shuffling, dynamic offset chaos key production, inter-layer XOR, and block 90 degree rotations to disorder the correlations intrinsic in image. The method is aimed for efficiency and scalability, accomplishing complexity order for n-pixels over specific cipher rounds. The experiment outcomes depict great resistant to cryptanalysis attacks, containing statistical, differential and brut
... Show MoreHM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023
Color image compression is a good way to encode digital images by decreasing the number of bits wanted to supply the image. The main objective is to reduce storage space, reduce transportation costs and maintain good quality. In current research work, a simple effective methodology is proposed for the purpose of compressing color art digital images and obtaining a low bit rate by compressing the matrix resulting from the scalar quantization process (reducing the number of bits from 24 to 8 bits) using displacement coding and then compressing the remainder using the Mabel ZF algorithm Welch LZW. The proposed methodology maintains the quality of the reconstructed image. Macroscopic and
In this paper, an efficient image segmentation scheme is proposed of boundary based & geometric region features as an alternative way of utilizing statistical base only. The test results vary according to partitioning control parameters values and image details or characteristics, with preserving the segmented image edges.
The hero traditionally has such admirable traits as courage, fortitude,
chivalry and patriotism. In the literary works, the hero is the leading
character and the pivot around which all the characters and the events
revolve. The characteristics of the hero usually reflect the cultural values
of his time. Because, in each age, Man's attitudes towards himself and the
world change, different images of the hero emerge.
In Greek Mythology, the hero is frequently favoured by the gods;
therefore, he is himself semi-divine. The Greek hero is of princely birth
and is endowed with good physique, exceptional strength, skill in
athletics and battle, energy and eloquence, like Odysseus who is the hero
of the Odyssey, long