Pavement crack and pothole identification are important tasks in transportation maintenance and road safety. This study offers a novel technique for automatic asphalt pavement crack and pothole detection which is based on image processing. Different types of cracks (transverse, longitudinal, alligator-type, and potholes) can be identified with such techniques. The goal of this research is to evaluate road surface damage by extracting cracks and potholes, categorizing them from images and videos, and comparing the manual and the automated methods. The proposed method was tested on 50 images. The results obtained from image processing showed that the proposed method can detect cracks and potholes and identify their severity levels with a medium validity of 76%. There are two kinds of methods, manual and automated, for distress evaluation that are used to assess pavement condition. A committee of three expert engineers in the maintenance department of the Mayoralty of Baghdad did the manual assessment of a highway in Baghdad city by using a Pavement Condition Index (PCI). The automated method was assessed by processing the videos of the road. By comparing the automated with the manual method, the accuracy percentage for this case study was 88.44%. The suggested method proved to be an encouraging solution for identifying cracks and potholes in asphalt pavements and sorting their severity. This technique can replace manual road damage assessment.
Aromatic hydrocarbons present in Iraqi national surface water were believed to be raised principally from combustion of various petroleum products, industrial processes and transport output and their precipitation on surface water.
Polycyclic aromatic hydrocarbons (PAHs) were included in the priority pollutant list due to their toxic and carcinogenic nature. The concern about water contamination and the consequent human exposure have encouraged the development of new methods for
PAHs detection and removal.
PAHs, the real contaminants of petroleum matter, were detected in selected sites along Tigris River within Baghdad City in summer and winter time, using Shimadzu high performance liquid chromatography (HPLC) system.
Analysi
The current study performed in order to detect and quantify epicatechin in two tea samples of Camellia sinensis (black and green tea) by thin layer chromatography (TLC) and high performance liquid chromatography (HPLC). Extraction of epicatechin from black and green tea was done by using two different methods: maceration (cold extraction method) and decoction (hot extraction method). Qualitative and quantitative determinations of epicatechin in two tea samples were investigated. Epicatechin identification was made by utilizing preliminary chemical tests and TLC. This identification was also boosted by HPLC and then quantified epicatechin in all ethyl acetate fractions of two tea samples. This research revealed the existence of epica
... Show MoreObjectives: To identify the frequency and types of microsatellite instability among a group of sporadic CRC patients and to correlate the findings with clinicopathological characteristics. Methods: During an 8-month period, all patients with sporadic CRC who attended to two teaching hospitals in Baghdad, Iraq were recruited to this cross-sectional study regardless of age, sex, ethnicity, or tumor characteristics. Demographic, clinical, and histopathological features were recorded. DNA was extracted from FFPE-blocks of the resected tumors and normal tissues. PCR amplification of five microsatellite mononucleotide repeat loci (BAT25, BAT26, NR-21, NR-24, and MONO-27) and 2 pentanucleotide repeat control markers (Penta C and Pent
... Show MoreThis study was conducted to detect C.sakazakii PIF and raw milk. Two hundred samples of PIF were taken from the infected hospital infants who used this type of milk and from the local markets in addition to 16 sample of raw milk were collected. The study is the first to report the isolation of C. sakazakii and Enterobacter spp. from raw milk in Iraq. The distribution of C.sakazakii and Enterobacter spp. among the presumptive isolates using Vitek-GN2 system gave 1/16(6.25%) isolates of C.sakazakii and 4/16 (25%) isolates of Enterobacter spp. Enterobacter spp. isolates include (E.cloacae ssp. cloacae and E.cloacae ssp. dissolvens, E.hormaechei, and E.ludwigii) that isolate from raw milk Differences in between percentages of each isolate perse
... Show MoreThe target of this study was to study the natural phytochemical components of the head (capsule) of Cynara scolymus cultivated in Iraq. The head (capsule) of plant was extracted by maceration in70% ethanol for 72 hours, and fractioned by hexane, chloroform and ethyl acetate. Preliminary qualitative phytochemical screening was performed on the ethyl acetate fraction for capsule was revealed the presence of flavonoid and aromatic acids. These were examined by (high -performance liquid chromatography) (HPLC diodarray), (high- performance thin-layer chromatography)(HPTLC).
Flavonoids were isolated by preparative layer chromatography and aromatic acid was isolated by preparative high-
... Show MoreBackground: Non-small cell lung cancer (NSCLC) is caused of 85% of all lung cancers. Among the most important factors for lung tumor growth and proliferation are the tyrosine kinase receptors that coded by the epidermal growth factor recep-tor (EGFR) gene. Activation of EGFR ultimately leads to developing of lung cancer. The present study was undertaken with an objective to detect EGFR mutations in bronchial wash from Iraqi patients with NSCLC before treatment. Methods: DNA was extracted from bronchial wash samples collected from 50 patients with NSCLC by using a Qiamp DNA Mini Kit (Qiagen, Hilden, Germany). Then, EGFR mutations were determined by using real-time RCR combined with two technologies, Amplification Refractory Mutation System (
... Show MoreConvolutional Neural Networks (CNN) have high performance in the fields of object recognition and classification. The strength of CNNs comes from the fact that they are able to extract information from raw-pixel content and learn features automatically. Feature extraction and classification algorithms can be either hand-crafted or Deep Learning (DL) based. DL detection approaches can be either two stages (region proposal approaches) detector or a single stage (non-region proposal approach) detector. Region proposal-based techniques include R-CNN, Fast RCNN, and Faster RCNN. Non-region proposal-based techniques include Single Shot Detector (SSD) and You Only Look Once (YOLO). We are going to compare the speed and accuracy of Faster RCNN,
... Show MoreThe main objective of this paper is to develop and validate flow injection method, a precise, accurate, simple, economic, low cost and specific turbidimetric method for the quantitative determination of mebeverine hydrochloride (MbH) in pharmaceutical preparations. A homemade NAG Dual & Solo (0-180º) analyser which contains two identical detections units (cell 1 and 2) was applied for turbidity measurements. The developed method was optimized for different chemical and physical parameters such as perception reagent concentrations, aqueous salts solutions, flow rate, the intensity of the sources light, sample volume, mixing coil and purge time. The correlation coefficients (r) of the developed method were 0.9980 and 0.9986 for cell
... Show More