This study compared in vitro the microleakage of a new low shrink silorane-based posterior composite (Filtek™ P90) and two methacrylate-based composites: a packable posterior composite (Filtek™ P60) and a nanofill composite (Filtek™ Supreme XT) through dye penetration test. Thirty sound human upper premolars were used in this study. Standardized class V cavities were prepared at the buccal surface of each tooth. The teeth were then divided into three groups of ten teeth each: (Group 1: restored with Filtek™ P90, Group 2: restored with Filtek™ P60, and Group 3: restored with Filtek™ Supreme XT). Each composite system was used according to the manufacturer's instructions with their corresponding adhesive systems. The teeth were then thermocycled, immersed in 1% methylene blue dye for 24 hours at room temperature, embedded in auto-polymerizing acrylic resin and sectioned longitudinally bucco-lingually. Microleakage was evaluated by assessing the linear dye penetration at the tooth/restoration interface occlusally and gingivally. The highest microleakage score occlusally or gingivally was recorded and the results were analyzed statistically using SPSS version 13. The results of this study showed that the silorane-based posterior composite Filtek™ P90 showed significantly less microleakage than the methacrylate-based packable composite (Filtek™ P60) and the nano-filled composite (Filtek™ Supreme XT) when the tooth-restoration interface is located in enamel.
In the last few years, the literature conferred a great interest in studying the feasibility of using memristive devices for computing. Memristive devices are important in structure, dynamics, as well as functionalities of artificial neural networks (ANNs) because of their resemblance to biological learning in synapses and neurons regarding switching characteristics of their resistance. Memristive architecture consists of a number of metastable switches (MSSs). Although the literature covered a variety of memristive applications for general purpose computations, the effect of low or high conductance of each MSS was unclear. This paper focuses on finding a potential criterion to calculate the conductance of each MMS rather t
... Show MoreBackground: Lymphomas are a group of diseases caused by malignant lymphocytes that accumulate in lymph nodes and cause the characteristic clinical features of lymphadenopathy. Intercellular adhesion molecule-1 (ICAM-1) (CD54) is a transmembrane glycoprotein belonging to the immunoglobulin superfamily of adhesion molecules. Cortactin was first identified as one of the major substrates for src kinase. because it localized to Cortical actin structures, The aims of this study was to evaluate and compare the immunohistochemical of ICAM-1 expression as cell adhesion molecule marker and Cortactin expression as invasive marker. Material and Methods: This study was performed on (68) formalin-fixed, paraffin-embedded blocks, histopathologically diagn
... Show MoreProtecting information sent through insecure internet channels is a significant challenge facing researchers. In this paper, we present a novel method for image data encryption that combines chaotic maps with linear feedback shift registers in two stages. In the first stage, the image is divided into two parts. Then, the locations of the pixels of each part are redistributed through the random numbers key, which is generated using linear feedback shift registers. The second stage includes segmenting the image into the three primary colors red, green, and blue (RGB); then, the data for each color is encrypted through one of three keys that are generated using three-dimensional chaotic maps. Many statistical tests (entropy, peak signa
... Show MorePhotodetector based on Rutile and Anatase TiO2 nanostructures/n-Si Heterojunction
RA Ali, LK Abood, Int J Sci Res, 2017 - Cited by 2
Nowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermor
... Show MoreDisease diagnosis with computer-aided methods has been extensively studied and applied in diagnosing and monitoring of several chronic diseases. Early detection and risk assessment of breast diseases based on clinical data is helpful for doctors to make early diagnosis and monitor the disease progression. The purpose of this study is to exploit the Convolutional Neural Network (CNN) in discriminating breast MRI scans into pathological and healthy. In this study, a fully automated and efficient deep features extraction algorithm that exploits the spatial information obtained from both T2W-TSE and STIR MRI sequences to discriminate between pathological and healthy breast MRI scans. The breast MRI scans are preprocessed prior to the feature
... Show MoreThis paper proposed a new method for network self-fault management (NSFM) based on two technologies: intelligent agent to automate fault management tasks, and Windows Management Instrumentations (WMI) to identify the fault faster when resources are independent (different type of devices). The proposed network self-fault management reduced the load of network traffic by reducing the request and response between the server and client, which achieves less downtime for each node in state of fault occurring in the client. The performance of the proposed system is measured by three measures: efficiency, availability, and reliability. A high efficiency average is obtained depending on the faults occurred in the system which reaches to
... Show More