silver nanoparticle which synthesized by.
The fabrication of Solid and Hollow silver nanoparticles (Ag NPs) has been achieved and their characterization was performed using transmission electron microscopy (TEM), zeta potential, UV–VIS spectroscopy, and X-ray diffraction (XRD). A TEM image revealed a quasispherical form for both Solid and Hollow Ag NPs. The measurement of surface charge revealed that although Hollow Ag NPs have a zeta potential of -43 mV, Solid Ag NPs have a zeta potential of -33 mV. According to UV-VIS spectroscopy measurement Solid and Hollow Ag NPs both showed absorption peaks at wavelengths of 436 nm and 412 nm, respectively. XRD pattern demonstrates that the samples' crystal structure is cubic, similar to that of the bulk materials, with
... Show MoreGiardia lamblia is one of most common protozoan cause diarrheas, and the most health problem in development countries worldwide. Our work aimed to assess activity and toxicity of metronidazole loaded silver nanoparticles in treatment of acute giardiasis in mice. After inoculated mice with Giardia cysts in a dose of 105 cyst for acute infection, treatments were given for eight days. Number Giardia cysts in stool were discovered. Toxicity nanoparticles was estimated by Measurement oxidative stress markers (GSH) and (MDA) in liver, kidney tissue homogenate. The results showed single therapy was better effect by silver nanoparticles, highest percentages of reduction in number of cysts Giardia lamblia of infected mice treated with silver nanopar
... Show MoreThirteen morphometric characters of catfish
An aqueous chemical reaction has been used to prepare antifungal ZnS: Mn nanostructures, from manganese chloride, zinc acetate and thioacetamide in aqueous solution. The nanoparticle size has been controlled using thioglycolic acid as a capping factor. The major feature of the ZnS:Mn nanoparticles of average diameter ~ 2.73 nm is that possible preparing the sample from sources non-toxic precursors. The manufactured ZnS:Mn nanoparticles were identified and characterized to investigate the structure, morphology, composition of components of the nanoparticles and optical properties using (XRD, SEM, EDS and UV-Vis spectroscopy) techniques respectively. The agar dilution mechanism used to evaluate of the antifungal activity using ZnS:Mn nanopart
... Show MoreThis study aimed to study the effect of Ziziphus spina christi Aqueous cold and Alcoholic leaves and fruits extracts on the growth and activities of the following types of bacteria :( Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Streptococcus pyogenes ). The results appeared outweigh the alcoholic extract of leaves and fruits of Sidr that prepared by saxholate extractor by addition of ethanol 95% significant superiority as compared with aqueous extract that prepared by using distilled water as was its influence inhibitor to the growth and effectiveness of bacteria , about the treatment of in-vivo to cause injury to these types of bacteria diagnosed laboratory mice and treated with alcoholic extract of the leaves o
... Show MoreThe relationship between pollution levels in river sediment and fluctuating asymmetry of resident silurid fish species,
Two series of 1,3,4-oxadiazole derivatives at the sixth position of the 2,4-di-
Polyaniline (PANI) and Ag/PANI nanocomposite thin films have prepared by microwave induced plasma. The Ag powder of average particle size of 50 nm, were used to prepare Ag/PANI nanocomposite thin films. The Ag/PANI nanocomposite thin films prepared by polymerization in plasma and characterized by UV-VIS, FTIR, AFM and SEM to study the effect of silver nanoparticles on the optical properties, morphology and structure of the thin films. The optical properties studies showed that the energy band gap of the Ag/PANI (5%wt silver) decreased from 3.6 to 3.2 eV, where the substrate location varied from 4.4 to 3.4 cm from the axis of the cylindrical plasma chamber. Also the optical energy gap decreased systematically from 3.3 to 3 eV with increas
... Show MoreBackground Cold atmospheric plasma (CAP) is widely used in the cancer therapy field. This type of plasma is very close to room temperature. This paper illustrates the effects of CAP on breast cancer tissues both in vivo and in vitro. Methods The mouse mammary adenocarcinoma cell line AN3 was used for the in vivo study, and the MCF7, AMJ13, AMN3, and HBL cell lines were used for the in vitro study. A floating electrode-dielectric barrier discharge (FE-DBD) system was used. The cold plasma produced by the device was tested against breast cancer cells. Results The induced cytotoxicity percentages were 61.7%, 68% and 58.07% for the MCF7, AMN3, and AMJ13 cell lines, respectively, whereas the normal breast tissue HBL cell line exhibited very li
... Show More