This work focuses on the preparation of pure nanocrystalline SnO2 and SnO2:Cu thin films on cleaned glass substrates utilizing a sol-gel spin coating and chemical bath deposition (CBD) procedures. The primary aim of this study is to investigate the possible use of these thin films in the context of gas sensor applications. The films underwent annealing in an air environment at a temperature of 500 ◦C for duration of 60 minutes. The thickness of the film that was deposited may be estimated to be around 300 nm. The investigation included an examination of the structural, optical, electrical, and sensing characteristics, which were explored across various preparation circumstances, specifically focusing on varied concentrations of Cu-doping (2, 4, and 6 wt.%). The deposited films were analyzed by several techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and optical absorption spectroscopy. The films generated by the spin coating method had a tetragonal rutile structure, while the films created via the chemical bath deposition (CBD) technique displayed both tetragonal rutile and orthorhombic structures. The spin coating technique was used to make films of several weight percentages (0, 2, 4, and 6 wt.%). The resulting crystallite sizes were examined and found to be 23 nm, 18 nm, 14 nm, and 10.5 nm, respectively. Similarly, films made using the chemical bath deposition (CBD) method exhibited crystallite sizes of 22, 13.9, 9.3, and 8.15 nm, respectively. The obtained findings from atomic force microscopy (AFM) and scanning electron microscopy (SEM) analyses indicate a consistent trend whereby, as the concentration of Cu-doped material rises, there is a decrease in the average grain size. The transmittance and absorbance spectra were examined within the wavelength range of 300 to 1000 nm. The films generated by both approaches exhibit a significant level of light transmission throughout the visible spectrum. The bandgap energy of spin coating and CBD films decreases with increasing Cu-doped concentrations; the values were (3.88, 3.8, 3.68, and 3.63) eV and (3.8, 3.78, 3.66, and 3.55) eV, respectively. The electrical characteristics of the films include direct current (DC) electrical conductivity, which indicates the presence of two activation energies, Ea1 and Ea2. These activation energies exhibit an upward trend when the concentration of Cu doping is increased. The films were examined for their ability to detect carbon monoxide (CO) gas at a concentration of about 50 ppm at normal room temperature conditions. The sensitivity of the films to carbon monoxide (CO) gas was assessed at various time intervals and temperatures. The results indicated that the film generated using spin coating exhibited a notably high sensitivity at a temperature of 200 °C, while the film prepared using the chemical bath deposition (CBD) approach had heightened sensitivity at a temperature of 150 °C. Keywords: Spin coating, SnO2 thin films, CBD, AFM, XRD, gas sensor.
SUMMARY. – Nanocrystalline thin fi lms of CdS are deposited on glass substrate by chemical bath deposited technique using polyvinyl alcohol (PVA) matrix solution. Crystallite size of the nanocrystalline films are determining from broading of X-ray diffraction lines and are found to vary from 0.33-0.52 nm, an increase of molarity the grain size decreases which turns increases the band gap. The band gap of nanocrystalline material is determined from the UV spectrograph. The absorption edge and absorption coefficient increases when the molarity increases and shifted towards the lower wavelength.
The effects of nutrients and physical conditions on phytase production were investigated with a recently isolated strain of Aspergillus tubingensis SKA under solid state fermentation on wheat bran. The nutrient factors investigated included carbon source, nitrogen source, phosphate source and concentration, metal ions (salts) and the physical parameters investigated included inoculum size, pH, temperature and fermentation duration. Our investigations revealed that optimal productivity of phytase was achieved using wheat bran supplemented with: 1.5% glucose. 0.5% (NH4)2SO4, 0.1% sodium phytate. Additionally, optimal physical conditions were 1 × 105 spore/g substrate, initial pH of 5.0, temperature of fermentation 30˚C and fermentation dura
... Show MoreCopper Telluride Thin films of thickness 700nm and 900nm, prepared thin films using thermal evaporation on cleaned Si substrates kept at 300K under the vacuum about (4x10-5 ) mbar. The XRD analysis and (AFM) measurements use to study structure properties. The sensitivity (S) of the fabricated sensors to NO2 and H2 was measured at room temperature. The experimental relationship between S and thickness of the sensitive film was investigated, and higher S values were recorded for thicker sensors. Results showed that the best sensitivity was attributed to the Cu2Te film of 900 nm thickness at the H2 gas.
In this research, we study the changing structural properties of ZnO with changing annealing temp., in the range (473-773)K prepared by chemical bath deposition method at temp. (353)K, where deposited on glasses substrates at thickness (500±25)nm, the investigation of (XRD) indicates that the (ZnO) films are polycrystalline type of Hexagonal.
The results of the measuring of each sample from grain size, microstrain, dislocation density, integral breadth, shape factor and texture coefficient, show that annealing process leads to increase the grain size (26.74-57.96)nm, and decrease microstrain (0.130-0.01478), dislocation density (1.398-0.297)*1015
... Show MoreSb2S3 thin films have been prepared by chemical bath deposition on a glas sub Absorbance and transmittance spectra were recorded in the wavelength range (30-900) nm. The effects of thickness on absorption coefficient, reflectance, refractive index, extinction coefficient, real and imaginary parts of dielectric constant were estimated. It was found that the reflectivity, absorption coefficient , extinction coefficient, real part of dielectric constant and refractive index, all these parameters decrease as the thickness increased, while the imaginary part of the dielectric constant increase as the thickness incre
... Show MoreThin films of BhSe3 have being deposited on glass substrates of
about 80 - 172 ± 14 nm thickness from an aqueous solution bath at temperature 293 K for period 0.5 to 6.0 hours using alchemical bath deposition method .
The films are characterized by X-ray diffraction, X-ray
florescent techniques and optical transmittance spectra measurements in the rang 350 - 400 nm at 293 K. And shows that as deposited films are amorphous and a transition to polycrystalline state has taken place after annealing them at 373 K, for 30 minutes, But they will be dan1aged
... Show MoreBackground: Acute myeloid leukemia (AML) is an adult leukemia characterized by rapid proliferation of undifferentiated myeloid precursors, leading to bone marrow (BM) failure and impaired erythropoiesis. The p53 tumor suppressor protein regulates cell division and inhibits tumor development by preventing cell proliferation of altered or damaged DNA. It orchestrates various cellular reactions, including cell cycle arrest, DNA repair, and antioxidant properties. Objectives: To investigate the relationship of P53 serum level with hematological findings, remission, and survival status in de novo AML patients. Methods: This is a cross-sectional study that enrolled 63 newly diagnosed de novo AML patients, and 15 sex- and age-matched healt
... Show MoreCopper nanoparticles (CuNPs) were prepared with different diameters by sonoelectrodeposition technique using Electrodeposition process coupled with high-power ultrasound horn (Sonoelectrodeposition). The particle diameter of the CuNPs was adjusted by varying CuSO4 solution acidity (pH) and current density. The morphology and structure of the CuNPs were examined by X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). It was found that the size of the produced copper nanoparticles ranged between 22 to 77 nm, where the diameter of CuNPs increases with reduction the solution acidity from 0.5 to 1.5 pH and increasing the current density of the deposition from 100 to 400 nm. Finally the produced CuNPs were pressed to fabricate disc
... Show More