In this study, the first kind Bessel function was used to solve Kepler equation for an elliptical orbiting satellite. It is a classical method that gives a direct solution for calculation of the eccentric anomaly. It was solved for one period from (M=0-360)° with an eccentricity of (e=0-1) and the number of terms from (N=1-10). Also, the error in the representation of the first kind Bessel function was calculated. The results indicated that for eccentricity of (0.1-0.4) and (N = 1-10), the values of eccentric anomaly gave a good result as compared with the exact solution. Besides, the obtained eccentric anomaly values were unaffected by increasing the number of terms (N = 6-10) for eccentricities (0.8 and 0.9). The Bessel function's solution appeared to be close to the exact solution for eccentricity of 1 and more than 10 number of terms. Finally, the representation of the first kind Bessel function J1(x) was closer to the exact representation only for eccentricity 0.5 and (N=1-10).
This paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).
In this paper we find the exact solution of Burger's equation after reducing it to Bernoulli equation. We compare this solution with that given by Kaya where he used Adomian decomposition method, the solution given by chakrone where he used the Variation iteration method (VIM)and the solution given by Eq(5)in the paper of M. Javidi. We notice that our solution is better than their solutions.
The current research aims to analyze the mathematics book for the first intermediate grade according to the dimensions of mathematical power by answering the following question: What is the percentage of the availability of the dimensions of mathematical power included in the content of the mathematics textbook for first-grade students, average, in its first, and second parts for the academic year 2020-2021, approved by the Iraqi Ministry of Education / General Directorate of Curricula? The research community was determined by middle school mathematics books, and middle school students for middle ,and high school day schools affiliated to the Directorate of Education in Dhi Qar, and by the intentional test, the research sample was s
... Show More
In this work, the modified Lyapunov-Schmidt reduction is used to find a nonlinear Ritz approximation of Fredholm functional defined by the nonhomogeneous Camassa-Holm equation and Benjamin-Bona-Mahony. We introduced the modified Lyapunov-Schmidt reduction for nonhomogeneous problems when the dimension of the null space is equal to two. The nonlinear Ritz approximation for the nonhomogeneous Camassa-Holm equation has been found as a function of codimension twenty-four.
The distribution of the expanded exponentiated power function EEPF with four parameters, was presented by the exponentiated expanded method using the expanded distribution of the power function, This method is characterized by obtaining a new distribution belonging to the exponential family, as we obtained the survival rate and failure rate function for this distribution, Some mathematical properties were found, then we used the developed least squares method to estimate the parameters using the genetic algorithm, and a Monte Carlo simulation study was conducted to evaluate the performance of estimations of possibility using the Genetic algorithm GA.
Abstract In this paper the effect of light exposure duration on Anthracene solution in chloroform is studied. It is found that: the Anthracene solution change its color when it is exposed to light, and that its relative quantum efficiency, Φ, decreases as the light exposure duration, t, increases and this govern by following empirical equation:- Φ = 0.7918-0.0762 In (t)