Doxycycline hyclate is an antibiotic drug with a broad‐spectrum activity against a variety of gram‐positive and gram‐negative bacteria and is frequently used as a pharmacological agent and as an effector molecule in an inducible gene expression system. A sensitive, reliable and fast spectrophotometric method for the determination of doxycycline hyclate in pure and pharmaceutical formulations has been developed using flow injection analysis (FIA) and batch procedures. The proposed method is based on the reaction between the chromogenic reagent (V4+) and doxycycline hyclate in a neutral medium, resulting in the formation of a yellow compound that shows maximum absorbance at 396 nm. In a batch procedure, the proposed method was validated over the concentration range of 1.0–80 μg mL−1 with a sampling frequency of 30/h, and commercial pharmaceutical samples were successfully determined. The proposed method was successfully adapted with an FIA system where the peak heights are proportionally connected to doxycycline hyclate over the concentration range of 25–400 μg mL−1 with a sampling frequency of 50/h. The limits of detection (LOD) and quantification (LOQ) were 0.9 and 10.44 μg mL−1 and 3.01 and 34.81 μg mL−1 for batch and FIA respectively. The samples were submitted to an HPLC analysis, and the outcomes demonstrated excellent agreement with the suggested procedures. The adopted FIA procedure allows fast monitoring of doxycycline hyclate in pharmaceutical formulations and it can be used for quality control purposes during the production processes of doxycycline hyclate.
The gas sensing properties of Co3O4and Co3O4:Y nano structures were investigated. The films were synthesized using the hydrothermal method on a seeded layer. The XRD, SEM analysis and gas sensing properties were investigated for Co3O4and Co3O4:Y thin films. XRD analysis shows that all films are polycrystalline in nature, having a cubic structure, and the crystallite size is (11.7)nm for cobalt oxide and (9.3)nm for the Co3O4:10%Y. The SEM analysis of thin films obviously indicates that Co3O4possesses a nanosphere-like structure and a flower-like structure for Co3O4:Y.The sensitivity, response time and recovery time to a H2S reducing gas were tested at different operating
... Show MoreThe effect of thickness variation on some physical properties of hematite α-Fe2O3 thin films was investigated. An Fe2O3 bulk in the form of pellet was prepared by cold pressing of Fe2O3 powder with subsequent sintering at 800 . Thin films with various thicknesses were obtained on glass substrates by pulsed laser deposition technique. The films properties were characterized by XRD, and FT-IR. The deposited iron oxide thin films showed a single hematite phase with polycrystalline rhombohedral crystal structure .The thickness of films were estimated by using spectrometer to be (185-232) nm. Using Debye Scherrerś formula, the average grain size for the samples was found to be (18-32) nm. Atomic force microscopy indicated that the films had
... Show MoreThe reaction oisolated and characterized by elemental analysis (C,H,N) , 1H-NMR, mass spectra and Fourier transform (Ft-IR). The reaction of the (L-AZD) with: [VO(II), Cr(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)], has been investigated and was isolated as tri nuclear cluster and characterized by: Ft-IR, U. v- Visible, electrical conductivity, magnetic susceptibilities at 25 Co, atomic absorption and molar ratio. Spectroscopic evidence showed that the binding of metal ions were through azide and carbonyl moieties resulting in a six- coordinating metal ions in [Cr (III), Mn (II), Co (II) and Ni (II)]. The Vo (II), Cu (II), Zn (II), Cd (II) and Hg (II) were coordinated through azide group only forming square pyramidal
... Show More