Krawtchouk polynomials (KPs) and their moments are promising techniques for applications of information theory, coding theory, and signal processing. This is due to the special capabilities of KPs in feature extraction and classification processes. The main challenge in existing KPs recurrence algorithms is that of numerical errors, which occur during the computation of the coefficients in large polynomial sizes, particularly when the KP parameter (p) values deviate away from 0.5 to 0 and 1. To this end, this paper proposes a new recurrence relation in order to compute the coefficients of KPs in high orders. In particular, this paper discusses the development of a new algorithm and presents a new mathematical model for computing the initial value of the KP parameter. In addition, a new diagonal recurrence relation is introduced and used in the proposed algorithm. The diagonal recurrence algorithm was derived from the existing n direction and x direction recurrence algorithms. The diagonal and existing recurrence algorithms were subsequently exploited to compute the KP coefficients. First, the KP coefficients were computed for one partition after dividing the KP plane into four. To compute the KP coefficients in the other partitions, the symmetry relations were exploited. The performance evaluation of the proposed recurrence algorithm was determined through different comparisons which were carried out in state-of-the-art works in terms of reconstruction error, polynomial size, and computation cost. The obtained results indicate that the proposed algorithm is reliable and computes lesser coefficients when compared to the existing algorithms across wide ranges of parameter values of p and polynomial sizes N. The results also show that the improvement ratio of the computed coefficients ranges from 18.64% to 81.55% in comparison to the existing algorithms. Besides this, the proposed algorithm can generate polynomials of an order ∼8.5 times larger than those generated using state-of-the-art algorithms.
Based on analyzing the properties of Bernstein polynomials, the extended orthonormal Bernstein polynomials, defined on the interval [0, 1] for n=7 is achieved. Another method for computing operational matrices of derivative and integration D_b and R_(n+1)^B respectively is presented. Also the result of the proposed method is compared with true answers to show the convergence and advantages of the new method.
MCA has gained a reputation for being a very useful statistical method for determining the association between two or more categorical variables and their graphical description. For performance this method, we must calculate the singular vectors through (SVD). Which is an important primary tool that allows user to construct a low-dimensional space to describe the association between the variables categories. As an alternative procedure to use (SVD), we can use the (BMD) method, which involves using orthogonal polynomials to reflect the structure of ordered categorical responses. When the features of BMD are combined with SVD, the (HD) is formed. The aim of study is to use alternative method of (MCA) that is appropriate with order
... Show MoreIn this research a new system identification algorithm is presented for obtaining an optimal set of mathematical models for system with perturbed coefficients, then this algorithm is applied practically by an “On Line System Identification Circuit”, based on real time speed response data of a permanent magnet DC motor. Such set of mathematical models represents the physical plant against all variation which may exist in its parameters, and forms a strong mathematical foundation for stability and performance analysis in control theory problems.
An Optimal Algorithm for HTML Page Building Process
Regression testing being expensive, requires optimization notion. Typically, the optimization of test cases results in selecting a reduced set or subset of test cases or prioritizing the test cases to detect potential faults at an earlier phase. Many former studies revealed the heuristic-dependent mechanism to attain optimality while reducing or prioritizing test cases. Nevertheless, those studies were deprived of systematic procedures to manage tied test cases issue. Moreover, evolutionary algorithms such as the genetic process often help in depleting test cases, together with a concurrent decrease in computational runtime. However, when examining the fault detection capacity along with other parameters, is required, the method falls sh
... Show MoreThe data communication has been growing in present day. Therefore, the data encryption became very essential in secured data transmission and storage and protecting data contents from intruder and unauthorized persons. In this paper, a fast technique for text encryption depending on genetic algorithm is presented. The encryption approach is achieved by the genetic operators Crossover and mutation. The encryption proposal technique based on dividing the plain text characters into pairs, and applying the crossover operation between them, followed by the mutation operation to get the encrypted text. The experimental results show that the proposal provides an important improvement in encryption rate with comparatively high-speed Process
... Show MoreThis paper proposes a novel meta-heuristic optimization algorithm called the fine-tuning meta-heuristic algorithm (FTMA) for solving global optimization problems. In this algorithm, the solutions are fine-tuned using the fundamental steps in meta-heuristic optimization, namely, exploration, exploitation, and randomization, in such a way that if one step improves the solution, then it is unnecessary to execute the remaining steps. The performance of the proposed FTMA has been compared with that of five other optimization algorithms over ten benchmark test functions. Nine of them are well-known and already exist in the literature, while the tenth one is proposed by the authors and introduced in this article. One test trial was shown t
... Show MoreIn many video and image processing applications, the frames are partitioned into blocks, which are extracted and processed sequentially. In this paper, we propose a fast algorithm for calculation of features of overlapping image blocks. We assume the features are projections of the block on separable 2D basis functions (usually orthogonal polynomials) where we benefit from the symmetry with respect to spatial variables. The main idea is based on a construction of auxiliary matrices that virtually extends the original image and makes it possible to avoid a time-consuming computation in loops. These matrices can be pre-calculated, stored and used repeatedly since they are independent of the image itself. We validated experimentally th
... Show More