The green synthesis of nickel oxide nanoparticles (NiO-NP) was investigated using Ni(NO3)2 as a precursor, olive tree leaves as a reducing agent, and D-sorbitol as a capping agent. The structural, optical, and morphology of the synthesized NiO-NP have been characterized using ultraviolet–visible spectroscopy (UV-Vis), X-ray crystallography (XRD) pattern, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) analysis. The SEM analysis showed that the nanoparticles have a spherical shape and highly crystalline as well as highly agglomerated and appear as cluster of nanoparticles with a size range of (30 to 65 nm). The Scherrer relation has been used to estimate the crystallite size of NiO-NP which has been found about 42 nm. The NiO-NPs have subsequently used as adsorbents for adsorption of two types of dyes; methylene blue (MB) as cation dye and methyl orange (MO) as anion dye. The removal efficiency of dyes from contaminated water was investigated during various key parameters at room temperature; initial dye concentration (Co), pH, contact time (t), agitation speed, and adsorbent dosage. The maximum removal of MB dye was found to be 96% (Co=25 mg/l, pH=10, contact time=100 min, agitation speed=300 rpm and adsorbent dosage=6 g/l), while for MO the maximum removal reached 88% at (Co=20 mg/L, pH=2, contact time=160 min, agitation speed=300 rpm and adsorbent dosage=6 g/L). The experimental adsorption data were found to well obey Freundlich isotherm. The kinetic investigation showed that the adsorption process for both dyes followed a pseudo-second-order model with rate constants 0.0109 and 0.0079 (mg/g min) for MB and MO, respectively.
Removal of heavy metals from waste water has received a great deal of attention. The compare Cr
(VI) adsorption characteristics removing from wastewater by using thermally modified and non-modified
eggshells were examined
The purpose of this paper is to examine absorbance for the removal of the Red Congo using wheat husk as a biological pesticide. Several experiments have been conducted with the aim of configuring breakthrough data in a fluidized bed reactor. The minimum fluidized velocities of the bed were found to be 0.031 mm/s for mish sizes of (250) µm diameter with study the mass transfer be calculated KL values. The results showed a well-fitting with the experimental data. Different operating conditions were selected: bed height (2, 5 and 10) cm, flow rate (90, 100and 120) ml/sec and particle diameter (250, 600, 1000) µm. The breakthrough curves were plotted for Congo Red, Values showed that the lower the bed, the lower the number of ad
... Show MoreThe cost-effective removal of heavy metal ions represents a significant challenge in environmental science. In this study, we developed a straightforward and efficient reusable adsorbent by amalgamating chitosan and vermiculite (forming the CSVT composite), and comprehensively investigated its selective adsorption mechanism. Different techniques, such as Fourier-transform infrared spectroscopy (FTIR), zeta potential analysis, scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer, Emmett, Teller (BET) analysis were employed for this purpose. The prepared CSVT composite exhibited a larger surface area and higher mesoporosity increasing from 1.9 to 17.24 m2/g compared to pristine chitosan. The adsorption capabilities of the
... Show MoreIn present work examined the oxidation desulfurization in batch system for model fuels with 2250 ppm sulfur content using air as the oxidant and ZnO/AC composite prepared by thermal co-precipitation method. Different factors were studied such as composite loading 1, 1.5 and 2.5 g, temperature 25 oC, 30 oC and 40 oC and reaction time 30, 45 and 60 minutes. The optimum condition is obtained by using Tauguchi experiential design for oxidation desulfurization of model fuel. the highest percent sulfur removal is about 33 at optimum conditions. The kinetic and effect of internal mass transfer were studied for oxidation desulfurization of model fuel, also an empirical kinetic model was calculated for model fuels
... Show MoreEM International
In this study, gold nanoparticles (AuNPs) were synthesized using a plasma jet system at different exposure times. Using ultraviolet, visible spectra, X-ray diffraction, the nanoparticles were characterized (XRD). A Plasmon surface resonance concentrated at 530, 540, and 533 nm for the prepared AuNPs. The pattern of XRD showed that the extreme peaks of the film reflect crystalline existence. The face-centered cubic structure of the gold nanoparticles was prepared for all samples, with an average crystallite size of 25-40 nm. The effect of AuNPs in vivo on liver function levels was measured. For all doses, we notice an increase in the ranks of liver function in the blood during the period of dosing, and it begins to decrease when the dosi
... Show More