Structural buildings consist of concrete and steel, and these buildings have confronted many challenges from various aggressive environments against the materials manufactured from them. It contains high water levels and buildings whose concrete cover may be damaged and thus lead to the deterioration and corrosion of steel. It was important to have an alternative to steel, such as the glass fiber reinforced polymer (GFRP), which is distinguished by its great effectiveness in resisting corrosion, as well as its strong tensile resistance. Still, one of its drawbacks is that it has a low modulus of elasticity. This research article aims to conduct a numerical study using the nonlinear finite element ABAQUS program on eight beam models with various parameters such as stirrup spacing, compressive strength, reinforcement layer, and type of bar reinforcement under four-point bending. The result shows that the ultimate load capacity of the GFRP beam is higher than that of a beam reinforced with steel and the number and width of cracks are greater in the GFRP-reinforced beam than in the steel-reinforced beam. In general, the serviceability reflected by cracks and deflection is lower in GFRP-reinforced beams than in steel-reinforced beams with higher serviceability. The results, on either hand, showed the expected behavior of GFRP, which is linear elastic to the failure stage. These beams are divided into four groups of beams with different variables studied to understand GFRP bars’ behavior under static loading. The variables taken in this study are the spacing between the stirrups, the compressive strength of concrete, the effect of the number of layers of reinforcement, and the type of reinforcement bar.
This paper studies the behavior of reinforced Reactive Powder Concrete (RPC) two-way slabs under static and repeated load. The experimental program included testing six simply supported RPC two-way slabs of 1000 mm length, 1000 mm width, and 70 mm thickness. All the tested specimens were identical in their material properties, and reinforcement details except their steel fibers content. They were cast in three pairs, each one had a different steel fibers ratio (0.5 %, 1 %, and 1.5 %) respectively. In each pair, one specimen was tested under static load and the other under five cycles of repeated load (loading-unloading). Static test results revealed that increasing steel fibres volume fraction from 0.5 % to 1 % and from 1% to 1.5%,
... Show MoreThe use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement.
The main conclusion of this study was that all ty
... Show MoreThe use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements). The percentage of the compress
... Show MoreThe use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements). The percentage of the compress
... Show MoreNowadays, the use of recycled waste construction materials instead of aggregates is becoming popular in construction owing to its environmental benefits. This paper presents an experimental and analytical campaign to study the behavior of axially loaded columns constructed from recycled aggregates. The latter was used instead of natural aggregates, and they were collected from the waste of previous concrete constructions. Different concrete mixtures made from varying amounts of recycled aggregates ranged from 0 to 50% of the total coarse aggregate were conducted to achieve 28 MPa. The effect of steel fibers is another investigated variable with volumes ranged from 0 to 2% concerning concrete’s mixture. The experimental
... Show MoreThe aim of this investigation is to determine how different weight percentages of alumina nanoparticles, including 0.02, 0.04, and 0.06 percent wt, affect the physical characteristics of Poly Acrylamide (PAAM). Using a hot plate magnetic stirrer, 10 g of poly acrylamide powder was dissolved in 90 g of di-ionized distillate water for 4 hours to produce PAAM with a concentration of 0.11 g/ml. Four sections of the resulting solution, each with a volume of 20 ml, were created. Each solution was added independently with alumina nanoparticles in different ratios 0.0, 0.02, 0.04, and 0.06 to create four nano fluid solutions with different alumina nanoparticle contents based on each weight percent. The hand casting process for n
... Show MoreIn this paper, the path of the extracted and focused ions by the electrostatic lense having three electrodes of the same size and shape have been studied. However, the first and third electrodes had a different potential from the second electrode and the distance between any three electrodes was (d).The beams of the charged particles were controlled by using electrostatic fields which are used for accelerating and focusing. This paper focuses also on the effect of electrodes potentials on ion beam focusing. It is found that the best focusing was achieved when the values of the potential of the first and third electrode are equal to half of the value of the second electrode. Concerning transmiting and acumulating the ions beams, the study sh
... Show MoreThe introduction of concrete damage plasticity material models has significantly improved the accuracy with which the concrete structural elements can be predicted in terms of their structural response. Research into this method's accuracy in analyzing complex concrete forms has been limited. A damage model combined with a plasticity model, based on continuum damage mechanics, is recommended for effectively predicting and simulating concrete behaviour. The damage parameters, such as compressive and tensile damages, can be defined to simulate concrete behavior in a damaged-plasticity model accurately. This research aims to propose an analytical model for assessing concrete compressive damage based on stiffness deterioration. The prop
... Show More