OpenStreetMap (OSM), recognised for its current and readily accessible spatial database, frequently serves regions lacking precise data at the necessary granularity. Global collaboration among OSM contributors presents challenges to data quality and uniformity, exacerbated by the sheer volume of input and indistinct data annotation protocols. This study presents a methodological improvement in the spatial accuracy of OSM datasets centred over Baghdad, Iraq, utilising data derived from OSM services and satellite imagery. An analytical focus was placed on two geometric correction methods: a two-dimensional polynomial affine transformation and a two-dimensional polynomial conformal transformation. The former involves twelve coefficients for adjustment, while the latter encompasses six. Analysis within the selected region exposed variances in positional accuracy, with distinctions evident between Easting (E) and Northing (N) coordinates. Empirical results indicated that the conformal transformation method reduced the Root Mean Square Error (RMSE) by 4.434 meters in the amended OSM data. Contrastingly, the affine transformation method exhibited a further reduction in total RMSE by 4.053 meters. The deployment of these proposed techniques substantiates a marked enhancement in the geometric fidelity of OSM data. The refined datasets have significant applications, extending to the representation of roadmaps, the analysis of traffic flow, and the facilitation of urban planning initiatives.
The climate is one of the natural factors affecting agriculture, and the success of the cultivation of any agricultural crop depends on the nature of the prevailing climate in the area of its cultivation. If the main elements of climate: temperature, rain and humidity, affect the various agricultural activities that can be practiced, and the stages of growth of agricultural crops and also determine the areas of spread. When the climatic requirements of any crop are well available, its cultivation is successful and comfortable. The research starts from the problem of spatial variation of date production spatially in the study area and the reason for choosing dates because of its economic importance, so the research will be based on
... Show MoreThis research evaluates the optical properties of an inhomogeneous and non-paraxial system using a solar ball lens (SBL) as a new thermal solar concentrated collector. This evaluation is based on detecting a diacaustic curve in a straightforward and accurate manner, with the diagnostic relying on image processing as a computational tool using the MATLAB program rather than a complicated numerical analytic procedure. The circle of least confusion (CLC) of the (SBL), (Fluorinated ethylene propylene (FEP) polymer – water core), was calculated. Furthermore, the study evaluated the maximum geometrical concentration ratio (G C) of refracted solar radiation that can be captured by a receiver of the (SBL). Without energy losses due
... Show MoreOne of the significant stages in computer vision is image segmentation which is fundamental for different applications, for example, robot control and military target recognition, as well as image analysis of remote sensing applications. Studies have dealt with the process of improving the classification of all types of data, whether text or audio or images, one of the latest studies in which researchers have worked to build a simple, effective, and high-accuracy model capable of classifying emotions from speech data, while several studies dealt with improving textual grouping. In this study, we seek to improve the classification of image division using a novel approach depending on two methods used to segment the images. The first
... Show MoreData mining is one of the most popular analysis methods in medical research. It involves finding patterns and correlations in previously unknown datasets. Data mining encompasses various areas of biomedical research, including data collection, clinical decision support, illness or safety monitoring, public health, and inquiry research. Health analytics frequently uses computational methods for data mining, such as clustering, classification, and regression. Studies of large numbers of diverse heterogeneous documents, including biological and electronic information, provided extensive material to medical and health studies.
A signature is a special identifier that confirms a person's identity and distinguishes him or her from others. The main goal of this paper is to present a deep study of the spatial density distribution method and the effect of a mass-based segmentation algorithm on its performance while it is being used to recognize handwritten signatures in an offline mode. The methodology of the algorithm is based on dividing the image of the signature into tiles that reflect the shape and geometry of the signature, and then extracting five spatial features from each of these tiles. Features include the mass of each tile, the relative mean, and the relative standard deviation for the vertical and horizontal projections of that tile. In the clas
... Show MoreThe applications of Ruscheweyh derivative are studied and discussed of class of meromorphic multivalent application. We get some interesting geometric properties, such as coefficient bound, Convex linear combination, growth and distortion bounds, radii of starlikenss , convexity and neighborhood property.
This study attempts to provide an approach analysis for the news, depending on the bases and principles which conceptuality semiotic researchers of this field first of them «A. J. Gremas» for the theory of «narrative discourse analysis», to more clarify we tried to apply it on a published press- news, to concludes the most important steps and methods that are necessary to follows gain more understanding of the press- news.