OpenStreetMap (OSM), recognised for its current and readily accessible spatial database, frequently serves regions lacking precise data at the necessary granularity. Global collaboration among OSM contributors presents challenges to data quality and uniformity, exacerbated by the sheer volume of input and indistinct data annotation protocols. This study presents a methodological improvement in the spatial accuracy of OSM datasets centred over Baghdad, Iraq, utilising data derived from OSM services and satellite imagery. An analytical focus was placed on two geometric correction methods: a two-dimensional polynomial affine transformation and a two-dimensional polynomial conformal transformation. The former involves twelve coefficients for adjustment, while the latter encompasses six. Analysis within the selected region exposed variances in positional accuracy, with distinctions evident between Easting (E) and Northing (N) coordinates. Empirical results indicated that the conformal transformation method reduced the Root Mean Square Error (RMSE) by 4.434 meters in the amended OSM data. Contrastingly, the affine transformation method exhibited a further reduction in total RMSE by 4.053 meters. The deployment of these proposed techniques substantiates a marked enhancement in the geometric fidelity of OSM data. The refined datasets have significant applications, extending to the representation of roadmaps, the analysis of traffic flow, and the facilitation of urban planning initiatives.
—Medical images have recently played a significant role in the diagnosis and detection of various diseases. Medical imaging can provide a means of direct visualization to observe through the human body and notice the small anatomical change and biological processes associated by different biological and physical parameters. To achieve a more accurate and reliable diagnosis, nowadays, varieties of computer aided detection (CAD) and computer-aided diagnosis (CADx) approaches have been established to help interpretation of the medical images. The CAD has become among the many major research subjects in diagnostic radiology and medical imaging. In this work we study the improvement in accuracy of detection of CAD system when comb
... Show MoreThe interests toward developing accurate automatic face emotion recognition methodologies are growing vastly, and it is still one of an ever growing research field in the region of computer vision, artificial intelligent and automation. However, there is a challenge to build an automated system which equals human ability to recognize facial emotion because of the lack of an effective facial feature descriptor and the difficulty of choosing proper classification method. In this paper, a geometric based feature vector has been proposed. For the classification purpose, three different types of classification methods are tested: statistical, artificial neural network (NN) and Support Vector Machine (SVM). A modified K-Means clustering algorithm
... Show MoreThe substantial key to initiate an explicit statistical formula for a physically specified continua is to consider a derivative expression, in order to identify the definitive configuration of the continua itself. Moreover, this statistical formula is to reflect the whole distribution of the formula of which the considered continua is the most likely to be dependent. However, a somewhat mathematically and physically tedious path to arrive at the required statistical formula is needed. The procedure in the present research is to establish, modify, and implement an optimized amalgamation between Airy stress function for elastically-deformed media and the multi-canonical joint probability density functions for multivariate distribution complet
... Show MoreThe key objective of the study is to understand the best processes that are currently used in managing talent in Australian higher education (AHE) and design a quantitative measurement of talent management processes (TMPs) for the higher education (HE) sector.
The three qualitative multi-method studies that are commonly used in empirical studies, namely, brainstorming, focus group discussions and semi-structured individual interviews were considered. Twenty
A mathematical method with a new algorithm with the aid of Matlab language is proposed to compute the linear equivalence (or the recursion length) of the pseudo-random key-stream periodic sequences using Fourier transform. The proposed method enables the computation of the linear equivalence to determine the degree of the complexity of any binary or real periodic sequences produced from linear or nonlinear key-stream generators. The procedure can be used with comparatively greater computational ease and efficiency. The results of this algorithm are compared with Berlekamp-Massey (BM) method and good results are obtained where the results of the Fourier transform are more accurate than those of (BM) method for computing the linear equivalenc
... Show MoreAbstract:
The research seeks to identify the role of the International Assurance Standard (3402) in the auditor's procedures, as the importance of the research stems from providing assurance services for control tools through reports that are prepared according to this standard, which contribute to strengthening audit procedures through a proposed assurance program. Many conclusions were reached, the most important of which The assurance operations are considered among the operations with a special assignme
... Show MoreThis review examines how artificial intelligence (AI) including machine learning (ML), deep learning (DL), and the Internet of Things (IoT) is transforming operations across exploration, production, and refining in the Middle Eastern oil and gas sector. Using a systematic literature review approach, the study analyzes AI adoption in upstream, midstream, and downstream activities, with a focus on predictive maintenance, emission monitoring, and digital transformation. It identifies both opportunities and challenges in applying AI to achieve environmental and economic goals. Although adoption levels vary across the region, countries such as Saudi Arabia, the UAE, and Qatar are leading initiatives that align with global sustainability targets.
... Show More