The need to constantly and consistently improve the quality and quantity of the educational system is essential. E-learning has emerged from the rapid cycle of change and the expansion of new technologies. Advances in information technology have increased network bandwidth, data access speed, and reduced data storage costs. In recent years, the implementation of cloud computing in educational settings has garnered the interest of major companies, leading to substantial investments in this area. Cloud computing improves engineering education by providing an environment that can be accessed from anywhere and allowing access to educational resources on demand. Cloud computing is a term used to describe the provision of hosting services on the Internet. It is predicted to be the next generation of information technology architecture and offers great potential to enhance productivity and reduce costs. Cloud service providers offer their processing and memory resources to users. By paying for the use of these resources, users can access them for their calculations and processing anytime and anywhere. Cloud computing provides the ability to increase productivity, save information technology resources, and enhance computing power, converting processing power into a tool with constant access capabilities. The use of cloud computing in a system that supports remote education has its own set of characteristics and requires a unique strategy. Students can access a wide variety of instructional engineering materials at any time and from any location, thanks to cloud computing. Additionally, they can share their materials with other community members. The use of cloud computing in e-learning offers several advantages, such as unlimited computing resources, high scalability, and reduced costs associated with e-learning. An improvement in the quality of teaching and learning is achieved through the use of flexible cloud computing, which offers a variety of resources for educators and students. In light of this, the current research presents cloud computing technology as a suitable and superior option for e-learning systems.
The current research aims to prepare a proposed Programmebased sensory integration theory for remediating some developmental learning disabilities among children, researchers prepared a Programme based on sensory integration through reviewing studies related to the research topic that can be practicedby some active teaching strategies (cooperative learning, peer learning, Role-playing, and educational stories). The Finalformat consists of(39) training sessions.
Many consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is s
... Show MoreAbstract
Objectives: To find out the association between enhancing learning needs and demographic characteristic of (gender, education level and age).
Methods: This study was conducted on purposive sample was selected to obtain representative and accurate data consisting of (90) patients who are in a peroid of recovering from myocardial infarction at Missan Center for Cardiac Diseases and Surgery, (10) patients were excluded for the pilot study, Data were analyzed using descriptive statistical data analysis approach of frequency, percentage, and analysis of variance (ANOVA).
Results: The study finding shows, there was sign
... Show MoreA three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an
... Show MoreIn this work, the precursor [2-(1,5-dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylimino)acetic acid] was synthesised from 4-aminoantipyrine and glyoxylic acid, this precursor has been used in the synthesis of new multidentate ligand [2-((E)-3-(2-hydroxyphenylimino)-1,5-dimethyl-2-phenyl-2,3-dihydro-1H-pyrazol-4-ylimino)acetic acid][H2L] type (N2O2). The ligand was refluxed in ethanol with metal ions [VO(II), Mn(II), Co(II) and Ni(II)] salts to give complexes of general molecular formula:[M(H2L)2(X)(Y)].B, where: M=VO(II), X=0, Y=OSO3-2, B=2H2O; M=Mn(II),Co(II) ,X=Cl, Y=Cl, B=0; M=Ni(II), X=H2O, Y=Cl, B=Cl. These complexes were characterised by atomic absorpition(A.A), F.T-I.R., (U.V-Vis)spectroscopies (1H,13C NMR for ligand only), alon
... Show More