Diamond-like carbon, amorphous hydrogenated films forms of carbon, were pretreated from cyclohexane (C6H12) liquid using plasma jet which operates with alternating voltage 7.5kv and frequency 28kHz. The plasma Separates molecules of cyclohexane and Transform it into carbon nanoparticles. The effect of argon flow rate (0.5, 1 and 1.5 L/min) on the optical and chemical bonding properties of the films were investigated. These films were characterized by UV-Visible spectrophotometer, X-ray diffractometer (XRD) Raman spectroscopy and scanning electron microscopy (SEM). The main absorption appears around 296, 299 and 309nm at the three flow rate of argon gas. The value of the optical energy gap is 3.37, 3.55 and 3.68 eV at a different flow rate of argon gas. For XRD analysis, The presence of diamond peaks and graphite peaks in the x-ray spectrum for these films Indicates that there is an occurrence of local ordered sp3 and sp2 for carbon domains and graphite respectively. Raman spectroscopy analysis revealed two broad bands D band and G band. The upshift of D band of diamond and downshift of the G band of graphite with is indicative of the presence of DLC films.
The acrylic polymer composites in this study are made up of various weight ratios of cement or silica nanoparticles (1, 3, 5, and 10 wt%) using the casting method. The effects of doping ratio/type on mechanical, dielectric, thermal, and hydrophobic properties were investigated. Acrylic polymer composites containing 5 wt% cement or silica nanoparticles had the lowest abrasion wear rates and the highest shore-D hardness and impact strength. The increase in the inclusion of cement or silica nanoparticles enhanced surface roughness, water contact angle (WCA), and thermal insulation. Acrylic/cement composites demonstrated higher mechanical, electrical, and thermal insulation properties than acrylic/silica composites because of their lowe
... Show MoreA d.c. magnetron sputtering system was designed and fabricated. The chamber of this system is consisted from two copper coaxial cylinders. The inner one used as the cathode and the outer one used as anode with magnetic coil located on the outer cylinder (anode). The axial behavior of the magnetic field strength along the cathode surface for various coil current (from 2A to 14A) are shown. The results of this work are investigated by three cylindrical Langmuir probes that have different diameters that are 2.2mm, 1mm, and 0.45mm. The results of these probes show that, there are two Maxwellian electron groups appear in the central region. As well as, the density of electron and ion decreases with increases of magnetic field strengths.
Objective: Chronic periodontitis (CP) is a common inflammatory disease that causes destruction to the supporting tissues of the teeth. Many treatment modalities tried to stop the disease progression. Platelet-rich plasma (PRP) is one of the regenerative methods that used in adjunct to conventional periodontal treatment. The aim of this study was to evaluate the anti-inflammatory effect of PRP by monitoring the lymphocyte count before and after its application to the periodontal pocket. Materials and Methods: Twenty patients, with CP and a pocket depth equal to or deeper than 4 mm, subjected to scaling, root planing, and PRP injection into the pocket. The lymphocyte count measured before an
This paper presents the effect of relativistic and ponderomotive nonlinearity on cross-focusing of two intense laser beams in a collisionless and unmagnetized plasma. It should be noted here that while considering the self-focusing due to relativistic electron mass variation, the electron ponderomotive density depression in the channel may also be important. Therefore/these two nonlinearties may simultaneously affect the self-focusing process. These nonlinearities depend not only on the intensity of one laser but also on the second laser. Therefore, one laser beam affects the dynamics of the second beam and hence the process of cross-focusing takes place. The electric field amplitude of the excited electron plasma wave (EPW) has been cal
... Show MorePregnancy- including hypertension(PIH), also known as preeclampsia, is one of the major causes of maternal and fetal death. This study was carried out on 30 pregnant women with preeclampsia and 30 healthy pregnant women as control ranging in age mean ±SD (28.84±3.55) years , BMI (76.80±9.78) Kg/m2 and gestation age(30.82±0.75)week. The aim of this research was studied the plasma Metanephrine level and other biochemical parameters such as Hemoglobin(Hb), serum Protein, S. Albumin, Globulin, Albumin/Globulin ratio (Alb/Glu. ratio), S.Glutamate Pyruvate aminotransferase (GPT), S.Glutamate Oxaloacetate aminotransferase(GOT). The obtained results have been compared with 30 healthy pregnant women as control group. The result showed that ther
... Show MoreAt atmospheric pressure and at a frequency of 9.1 kHz, a constructed magnetically stabilized tornado gliding arc discharge (MSGAD) system was utilized in this study to generate a non-thermal plasma with an alternating voltage source from 2,4,6,8 to 10 kV. Argon gas was used to generate the arc plasma with an adjustable flow rate using a flow meter regulator to stabilize the gas flow rate to 2 L/min. A gliding plasma discharge is achieved by a magnetic field for the purpose of a planned investigation. The influence of the magnetically stabilized tornado gliding arc discharge parameters such as magnetic field and applied voltage on microscopic tornado plasma parameters was studied. The electron temperature1was measured using a Boltzmann plot
... Show MorePlasma physics and digital image processing technique (DIPT) were utilized in this research to show the effect of the cold plasma (plasma needle) on blood cells. The second order statistical features were used to study this effect. Different samples were used to reach the aim of this paper; the patients have leukemia and their leukocytes number was abnormal. By studying the results of statistical features (mean, variance, energy and entropy), it is concluded that the blood cells of the sample showed a good response to the cold plasma.
Computer modeling has been used to investing the Coulomb coupling parameter ?. The effects of the structure parameter K, grain charge Z, plasma density N, temperature dust grain Td, on the Coulomb coupling parameter had been studied. It was seen that the ? was increasing with increasing Z and N, and decrease with increasing K and T. Also the critical value of ? that the phase transfer of the plasma state from liquid to solid was studied.
Dielectric barrier discharges (DBD) can be described as the presence of contact with the discharge of one or more insulating layers located between two cylindrical or flat electrodes connected to an AC/pulse dc power supply. In this work, the properties of the plasma generated by dielectric barrier discharge (DBD) system without and with a glass insulator were studied. The plasma was generated at a constant voltage of 4 kV and fixed distance between the electrodes of 5 mm, and with a variable flow rate of argon gas (0.5, 1, 1.5, 2 and 2.5) L/min. The emission spectra of the DBD plasmas at different flow rates of argon gas have been recorded. Boltzmann plot method was used to calculate the plasma electron temperature (Te), and Stark broadeni
... Show MoreThe influence of the grounded electrode area on the ignition voltage in capcitively coupled radio frequency discharge at 13.56 MHz in argon gas is studied experimentally. The results indicate a systematic decrease of the breakdown voltage with increasing grounded electrode area for the same pd value. Results show that the secondary ionization coefficient γ increases with the increase of grounded electrode area. Furthermore, results also the discharge current at the breakdown voltage increases almost linearly with the increase of electrode area suggesting an almost constant current density.