Diamond-like carbon, amorphous hydrogenated films forms of carbon, were pretreated from cyclohexane (C6H12) liquid using plasma jet which operates with alternating voltage 7.5kv and frequency 28kHz. The plasma Separates molecules of cyclohexane and Transform it into carbon nanoparticles. The effect of argon flow rate (0.5, 1 and 1.5 L/min) on the optical and chemical bonding properties of the films were investigated. These films were characterized by UV-Visible spectrophotometer, X-ray diffractometer (XRD) Raman spectroscopy and scanning electron microscopy (SEM). The main absorption appears around 296, 299 and 309nm at the three flow rate of argon gas. The value of the optical energy gap is 3.37, 3.55 and 3.68 eV at a different flow rate of argon gas. For XRD analysis, The presence of diamond peaks and graphite peaks in the x-ray spectrum for these films Indicates that there is an occurrence of local ordered sp3 and sp2 for carbon domains and graphite respectively. Raman spectroscopy analysis revealed two broad bands D band and G band. The upshift of D band of diamond and downshift of the G band of graphite with is indicative of the presence of DLC films.
The structural, optical properties of copper oxide thin films ( CuO) thin films which have been prepared by thermal oxidation with exist air once and oxygen another have been studied. Structural analysis results of Cu thin films demonstrate that the single phase of Cu with high a crystalline structure with a preferred orientation (111). X-ray diffraction results confirm the formation of pure (CuO) phase in both methods of preparation. The optical constant are investigated and calculated such as absorption coefficient, refractive index, extinction coefficient and the dielectric constants for the wavelengths in the range (300-1100) nm.
The optical detectors which had been used in medical applications, and especially in radioactive treatments, need to be modified studied for the effects of radiations on them. This study included preparation of the MnS thin films in a way that vacuum thermal evaporation process at room temperature 27°C with thickness (400+-10nm) nm and a sedimentation rate of 0.39nm/sec on glass floors. The thin films prepared as a detector and had to be treated with neutron irradiation to examine the results gained from this process. The results decay X-ray (XRD) showed that all the prepared thin films have a multi-crystalline structure with the dominance of the direction (111), the two samples were irradiated with a neutron irradiation source (241Am-9Be)
... Show MoreAceclofenac (AC) is an orally active phenyl acetic acid derivative, non-steroidal anti-inflammatory drug with exceptional anti-inflammatory, analgesic and antipyretic properties. It has low aqueous solubility, leading to slow dissolution, low permeability and inadequate bioavailability. The aim of the current study was to prepare and characterize AC-NS-based gel to enhance the dissolution rate and then percutaneous permeability. NS.s were prepared using solvent/antisovent precipitation method at different drug to polymer ratios (1:1, 1:2, and 1:3) using different polymers such as poly vinyl pyrrolidone (PVP-K25), hydroxy propyl methyl cellulose (HPMC-E5) and poloxamer® (388) as stabilizer
... Show MoreIt is important to note that Posaconazole (POCZ) is a newly developed extended-spectrum triazole that belongs to BCS class II and has a solubility of less than 1µg/ml. In patients with a weakened immune system, POCZ has been shown to be effective as an antifungal treatment for invasive infections caused by candida and aspergillus species. The nano-micelles technique can be used to increase POCZ solubility. In order to increase their apparent solubility in water, nano-micelles are made by combining macromolecules that self-assemble into ordered structures capable of entrapping hydrophobic drug molecules in the interior domain. Dispersed colloidal systems, of which nano-micelles are a subset, are a large and diverse group. Composed of a p
... Show MoreIn this work, the effect of aluminum (Al) dust particles on the DC discharge plasma properties in argon was investigated. A magnetron is placed behind the cathode at different pressures and with varying amounts of Al. The plasma temperature (Te) and density (ne) were calculated using the Boltzmann equation and Stark broadening phenomena, which are considered the most important plasma variables through which the other plasma parameters were calculated. The measurements showed that the emission intensity decreases with increasing pressure from 0.06 to 0.4 Torr, and it slightly decreases with the addition of the NPs. The calculations showed that the ne increased and Te decreased with pressure. Both Te and ne were reduced by increasing
... Show MoreAbstract- Plasma parameters in a planar dc-sputtering discharge in argon were measured by cylindrical electrostatic probe (Langmuir probe).Electron density, electron temperature, floating potential, and space potential were monitored as a function of working discharge pressure. Electrostatic probe and supporting circuit were described and used to plot the current – voltage characteristics. Plasma properties were inferred from the current-voltage characteristics of a single probe positioned at the inter-cathode space. Typical values are in the range of (10-16 -10-17) m-3 and (2.93 – 5.3) eV for the electron density and the electron temperature respectively.
Non-thermal plasmas have become popular as plasma technology has advanced in various fields, including waste management, aerospace technology, and medicinal applications. They can be used to replace combustion fuels in stationary hall motors and need little effort to keep running for longer periods of time. To improve overall system performance, non-reactive gases such as )Xe, Ar, and Kr) are utilized in pure or mixed form to generate plasma. Since DC glow discharge is a fundamental topic of importance, these gases have been researched. The paper concentrates on 2-D modeling and simulation. DC glow-discharge tubes are utilized with argon gas to create plasma and learn about its properties. The magnitude of the electron density, increases wi
... Show MoreVacuum evaporation technique was used to prepare pure and doped ZnS:Pb thin films at10% atomic weight of Pb element onto glass substrates at room temperature for 200 nm thickness. Effect of doping on a.c electrical properties such as, a.c conductivity, real, and imaginary parts of dielectric constant within frequency range (10 KHz - 10 MHz) are measured. The frequency dependence of a.c conductivity is matched with correlated barrier hoping especially at higher frequency. Effect of doping on behavior of a.c mechanism within temperature range 298-473 K was studied.