<p>In this paper, a simple color image compression system has been proposed using image signal decomposition. Where, the RGB image color band is converted to the less correlated YUV color model and the pixel value (magnitude) in each band is decomposed into 2-values; most and least significant. According to the importance of the most significant value (MSV) that influenced by any simply modification happened, an adaptive lossless image compression system is proposed using bit plane (BP) slicing, delta pulse code modulation (Delta PCM), adaptive quadtree (QT) partitioning followed by an adaptive shift encoder. On the other hand, a lossy compression system is introduced to handle the least significant value (LSV), it is based on an adaptive, error bounded coding system, and it uses the DCT compression scheme. The performance of the developed compression system was analyzed and compared with those attained from the universal standard JPEG, and the results of applying the proposed system indicated its performance is comparable or better than that of the JPEG standards.</p>
Hiding secret information in the image is a challenging and painstaking task in computer security and steganography system. Certainly, the absolute intricacy of attacks to security system makes it more attractive.in this research on steganography system involving information hiding,Huffman codding used to compress the secret code before embedding which provide high capacity and some security. Fibonacci decomposition used to represent the pixels in the cover image, which increase the robustness of the system. One byte used for mapping all the pixels properties. This makes the PSNR of the system higher due to random distribution of embedded bits. Finally, three kinds of evaluation are applied such as PSNR, chi-square attack, a
... Show MoreThe fetal heart rate (FHR) signal processing based on Artificial Neural Networks (ANN),Fuzzy Logic (FL) and frequency domain Discrete Wavelet Transform(DWT) were analysis in order to perform automatic analysis using personal computers. Cardiotocography (CTG) is a primary biophysical method of fetal monitoring. The assessment of the printed CTG traces was based on the visual analysis of patterns that describing the variability of fetal heart rate signal. Fetal heart rate data of pregnant women with pregnancy between 38 and 40 weeks of gestation were studied. The first stage in the system was to convert the cardiotocograghy (CTG) tracing in to digital series so that the system can be analyzed ,while the second stage ,the FHR time series was t
... Show MoreFractal image compression gives some desirable properties like fast decoding image, and very good rate-distortion curves, but suffers from a high encoding time. In fractal image compression a partitioning of the image into ranges is required. In this work, we introduced good partitioning process by means of merge approach, since some ranges are connected to the others. This paper presents a method to reduce the encoding time of this technique by reducing the number of range blocks based on the computing the statistical measures between them . Experimental results on standard images show that the proposed method yields minimize (decrease) the encoding time and remain the quality results passable visually.
Image compression is an important tool to reduce the bandwidth and storage
requirements of practical image systems. To reduce the increasing demand of storage
space and transmission time compression techniques are the need of the day. Discrete
time wavelet transforms based image codec using Set Partitioning In Hierarchical
Trees (SPIHT) is implemented in this paper. Mean Square Error (MSE), Peak Signal
to Noise Ratio (PSNR) and Maximum Difference (MD) are used to measure the
picture quality of reconstructed image. MSE and PSNR are the most common picture
quality measures. Different kinds of test images are assessed in this work with
different compression ratios. The results show the high efficiency of SPIHT algori
There is various human biometrics used nowadays, one of the most important of these biometrics is the face. Many techniques have been suggested for face recognition, but they still face a variety of challenges for recognizing faces in images captured in the uncontrolled environment, and for real-life applications. Some of these challenges are pose variation, occlusion, facial expression, illumination, bad lighting, and image quality. New techniques are updating continuously. In this paper, the singular value decomposition is used to extract the features matrix for face recognition and classification. The input color image is converted into a grayscale image and then transformed into a local ternary pattern before splitting the image into
... Show More