<p>In this paper, a simple color image compression system has been proposed using image signal decomposition. Where, the RGB image color band is converted to the less correlated YUV color model and the pixel value (magnitude) in each band is decomposed into 2-values; most and least significant. According to the importance of the most significant value (MSV) that influenced by any simply modification happened, an adaptive lossless image compression system is proposed using bit plane (BP) slicing, delta pulse code modulation (Delta PCM), adaptive quadtree (QT) partitioning followed by an adaptive shift encoder. On the other hand, a lossy compression system is introduced to handle the least significant value (LSV), it is based on an adaptive, error bounded coding system, and it uses the DCT compression scheme. The performance of the developed compression system was analyzed and compared with those attained from the universal standard JPEG, and the results of applying the proposed system indicated its performance is comparable or better than that of the JPEG standards.</p>
Inˑthis work, we introduce the algebraic structure of semigroup with KU-algebra is called KU-semigroup and then we investigate some basic properties of this structure. We define the KU-semigroup and several examples are presented. Also,we study some types of ideals in this concept such as S-ideal,k- ideal and P-ideal.The relations between these types of ideals are discussed and few results for product S-ideals of product KU-semigroups are given. Furthermore, few results of some ideals in KU-semigroup under homomorphism are discussed.
Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called Z-regular if every cyclic submodule (equivalently every finitely generated) is projective and direct summand. And a module M is F-regular if every submodule of M is pure. In this paper we study a class of modules lies between Z-regular and F-regular module, we call these modules regular modules.
Let R be a commutative ring with identity and let M be a unital left R-module.
A.Tercan introduced the following concept.An R-module M is called a CLSmodule
if every y-closed submodule is a direct summand .The main purpose of this
work is to develop the properties of y-closed submodules.
The aim of this paper is to introduce and study the concept of SN-spaces via the notation of simply-open sets as well as to investigate their relationship to other topological spaces and give some of its properties.
in recent years cryptography has played a big role especially in computer science for information security block cipher and public
In this paper ,we introduce a concept of Max– module as follows: M is called a Max- module if ann N R is a maximal ideal of R, for each non– zero submodule N of M; In other words, M is a Max– module iff (0) is a *- submodule, where a proper submodule N of M is called a *- submodule if [ ] : N K R is a maximal ideal of R, for each submodule K contains N properly. In this paper, some properties and characterizations of max– modules and *- submodules are given. Also, various basic results a bout Max– modules are considered. Moreover, some relations between max- modules and other types of modules are considered.
... Show MoreGangyong Lee, S.Tariq Rizvi, and Cosmin S.Roman studied Rickart modules.
The main purpose of this paper is to develop the properties of Rickart modules .
We prove that each injective and prime module is a Rickart module. And we give characterizations of some kind of rings in term of Rickart modules.
Let be a right module over a ring with identity. The semisecond submodules are studied in this paper. A nonzero submodule of is called semisecond if for each . More information and characterizations about this concept is provided in our work.
Let R be commutative ring with identity and let M be any unitary left R-module. In this paper we study the properties of ec-closed submodules, ECS- modules and the relation between ECS-modules and other kinds of modules. Also, we study the direct sum of ECS-modules.
Environmental controls, especially for temperature and humidity, are essential to maintain the safety, purity and effectiveness of drugs. The measurement of humidity can be particularly difficult and important in climatic and thermostatic chambers (warehouses, ovens, cold rooms, fridges, drying rooms, insulated boxes, etc.).
The old method of monitoring and qualification of climatic and thermostatic chambers requires placing a defined number of recorders, then programming and store them. After that, to examine the values recorded to revolve the status of the climatic and thermostatic chambers, if they are compliant or not-complaint at any time, so all that goes to waste time and efficiency of values.
We can do the monitoring and qu