<p>In this paper, a simple color image compression system has been proposed using image signal decomposition. Where, the RGB image color band is converted to the less correlated YUV color model and the pixel value (magnitude) in each band is decomposed into 2-values; most and least significant. According to the importance of the most significant value (MSV) that influenced by any simply modification happened, an adaptive lossless image compression system is proposed using bit plane (BP) slicing, delta pulse code modulation (Delta PCM), adaptive quadtree (QT) partitioning followed by an adaptive shift encoder. On the other hand, a lossy compression system is introduced to handle the least significant value (LSV), it is based on an adaptive, error bounded coding system, and it uses the DCT compression scheme. The performance of the developed compression system was analyzed and compared with those attained from the universal standard JPEG, and the results of applying the proposed system indicated its performance is comparable or better than that of the JPEG standards.</p>
This study proposed using color components as artificial intelligence (AI) input to predict milk moisture and fat contents. In this sense, an adaptive neuro‐fuzzy inference system (ANFIS) was applied to milk processed by moderate electrical field‐based non‐thermal (NP) and conventional pasteurization (CP). The differences between predicted and experimental data were not significant (
With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreThe current research deals with spatial relations as a tool to link urban landmarks in a homogeneous composition with monumental sculptures, by identifying these landmarks and the extent of their impact on them, which constitutes an urgent need to evaluate the appropriate place and its effects on them, so that this analytical study is a critical approach adopted in artistic studies of monumental models in Arabcapitals .The current research came in four chapters, the first chapter of which dealt with the research problem, its importance and the need for it, then its objectives that were determined in revealing the spatial relations and their impact on
... Show MoreThis paper proposes a better solution for EEG-based brain language signals classification, it is using machine learning and optimization algorithms. This project aims to replace the brain signal classification for language processing tasks by achieving the higher accuracy and speed process. Features extraction is performed using a modified Discrete Wavelet Transform (DWT) in this study which increases the capability of capturing signal characteristics appropriately by decomposing EEG signals into significant frequency components. A Gray Wolf Optimization (GWO) algorithm method is applied to improve the results and select the optimal features which achieves more accurate results by selecting impactful features with maximum relevance
... Show MoreComputer-aided diagnosis (CAD) has proved to be an effective and accurate method for diagnostic prediction over the years. This article focuses on the development of an automated CAD system with the intent to perform diagnosis as accurately as possible. Deep learning methods have been able to produce impressive results on medical image datasets. This study employs deep learning methods in conjunction with meta-heuristic algorithms and supervised machine-learning algorithms to perform an accurate diagnosis. Pre-trained convolutional neural networks (CNNs) or auto-encoder are used for feature extraction, whereas feature selection is performed using an ant colony optimization (ACO) algorithm. Ant colony optimization helps to search for the bes
... Show MoreFive heavy metals, namely Cd, Cu, Fe, Mn, and Pb in the surface water and through the water column were studied at 10 selected stations in the Razzazah lake and Karbala drainage canal for the period between November 1990 to October 1991*. pH and total hardness were also measured. Lead was found to be the highest in concentration as overall average values, followed by an manganese, iron, copper then cadmium at the surface as well as along the water column. All the studied metals were below or close to the maximum allowed limits of Iraqi standards for inland water. The spatial and seasonal variations were discussed.