The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when diagnosing a tissue sample. Small, unnoticeable changes in pixel density may indicate the beginning of cancer or tear tissue in the early stages. These details even expert pathologists might miss. Artificial intelligence (A.I.) and D.L. revolutionized radiology by enhancing efficiency and accuracy of both interpretative and non-interpretive jobs. When you look at AI applications, you should think about how they might work. Convolutional Neural Network (C.N.N.) is a part of D.L. that can be used to diagnose knee problems. There are existing algorithms that can detect and categorize cartilage lesions, meniscus tears on M.R.I., offer an automated quantitative evaluation of healing, and forecast who is most likely to have recurring meniscus tears based on radiographs.
The autocorrelation function calculations have been carried out on photon-limited computer-simulated images of binary stars that recorded through kolmogorov atmospheric turbulence. The effect of the parameters of photon limited binary star on the variation of signal to noise, signal to background ratios, number of images that processed and the magnitude of binary stars are studied and mathematic equations are given to investigate this effect. The result indicates that signal to background ratio of photon limited images of a binary star is independent of the total number of recorded photons.
Deep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreBackground: Maxillary sinusitis can arise after sinus floor elevation surgery and should be treated immediately to prevent further complications which included dental implants failure, graft lost, and oro-antral fistula. This is the first systematic review to assess the incidence, causes, and treatment of sinusitis after sinus lift surgery. Materials and methods: An electronic search included MEDLINE (PUBMED) data base site was carried out for articles involving development of sinusitis after sinus lift surgery from September 1997 up to April, 8, 2017. The search was done and reviewed by two independent authors. Results: The total results of electronic search were (182) abstracts and articles, the extracted articles which involved develo
... Show MoreLandfill and incineration are the most common and widely used methods to dispose of solid wastes; both of these techniques are considered the main sources of pollution in the world due to the harmful toxic emissions that are considered an environmental problem. Because of the large areas used by landfills, they are not always considered an economical method. With the increase in the production of solid materials, solid wastes increase the pressure on incinerators and landfills, making the environmental pollution hazard more serious. Instead, these waste materials can be used in some other applications. One of the most important of these applications is asphalt pavements, which are the most used types of pavements in the
... Show MoreCloud computing is an interesting technology that allows customers to have convenient, on-demand network connectivity based on their needs with minimal maintenance and contact between cloud providers. The issue of security has arisen as a serious concern, particularly in the case of cloud computing, where data is stored and accessible via the Internet from a third-party storage system. It is critical to ensure that data is only accessible to the appropriate individuals and that it is not stored in third-party locations. Because third-party services frequently make backup copies of uploaded data for security reasons, removing the data the owner submits does not guarantee the removal of the data from the cloud. Cloud data storag
... Show MoreRecent reports of new pollution issues brought on by the presence of medications in the aquatic environment have sparked a great deal of interest in studies aiming at analyzing and mitigating the associated environmental risks, as well as the extent of this contamination. The main sources of pharmaceutical contaminants in natural lakes and rivers include clinic sewage, pharmaceutical production wastewater, and sewage from residences that have been contaminated by drug users' excretions. In evaluating the health of rivers, pharmaceutical pollutants have been identified as one of the emerging pollutants. The previous studies showed that the contaminants in pharmaceuticals that are widely used are non-steroidal anti-inflammatory drugs, ant
... Show MoreCarbon-fiber-reinforced polymer (CFRP) is widely acknowledged as a leading advanced material structure, offering superior properties compared to traditional materials, and has found diverse applications in several industrial sectors, such as that of automobiles, aircrafts, and power plants. However, the production of CFRP composites is prone to fabrication problems, leading to structural defects arising from cycling and aging processes. Identifying these defects at an early stage is crucial to prevent service issues that could result in catastrophic failures. Hence, routine inspection and maintenance are crucial to prevent system collapse. To achieve this objective, conventional nondestructive testing (NDT) methods are utilized to i
... Show MoreUltra-High Temperature Materials (UHTMs) are at the base of entire aerospace industry; these high stable materials at temperatures exceeding 1600 °C are used to manage the heat shielding to protect vehicles and probes during the hypersonic flight through reentry trajectory against aerodynamic heating and reducing plasma surface interaction. Those materials are also recognized as Thermal Protection System Materials (TPSMs). The structural materials used during the high-temperature oxidizing environment are mainly limited to SiC, oxide ceramics, and composites. In addition to that, silicon-based ceramic has a maximum-use at 1700 °C approximately; as it is an active oxidation process o