Preferred Language
Articles
/
1hctP48BVTCNdQwCxmVA
Knee Meniscus Segmentation and Tear Detection Based On Magnitic Resonacis Images: A Review of Literature
...Show More Authors

The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when diagnosing a tissue sample. Small, unnoticeable changes in pixel density may indicate the beginning of cancer or tear tissue in the early stages. These details even expert pathologists might miss. Artificial intelligence (A.I.) and D.L. revolutionized radiology by enhancing efficiency and accuracy of both interpretative and non-interpretive jobs. When you look at AI applications, you should think about how they might work. Convolutional Neural Network (C.N.N.) is a part of D.L. that can be used to diagnose knee problems. There are existing algorithms that can detect and categorize cartilage lesions, meniscus tears on M.R.I., offer an automated quantitative evaluation of healing, and forecast who is most likely to have recurring meniscus tears based on radiographs.

Publication Date
Sun Jun 30 2024
Journal Name
International Journal Of Pharmaceutical Sciences And Nanotechnology(ijpsn)
A Subject Review on Application of Analytical Chemistry in the Mitochondrial Medicine
...Show More Authors

Understanding energy metabolism and intracellular energy transmission requires knowledge of the function and structure of the mitochondria. Issues with mitochondrial morphology, structure, and function are the most prevalent symptoms. They can damage organs such as the heart, brain, and muscle due to a variety of factors, such as oxidative damage, incorrect metabolism of energy, or genetic conditions. The control of cell metabolism and physiology depends on functional connections between mitochondrial and biological surroundings. Therefore, it is essential to research mitochondria in situ or in vivo without isolating them from their surrounding biological environment. Finding and spotting abnormal alterations in mitochondria is the

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Thu Dec 30 2021
Journal Name
Al-kindy College Medical Journal
The Impact of COVID-19 on Healthy Related Issues, A structured Review
...Show More Authors

Coronavirus: (COVID-19) is a recently discovered viral disease caused by a new strain of coronavirus.

The majority of patients with corona-virus infections will have a mild-moderate respiratory disease that recovers without special care. Most often, the elderly, and others with chronic medical conditions such as asthma, coronary disease, respiratory illness, and malignancy are seriously ill.

    COVID-19 is spread mostly by salivary droplets or nasal secretions when an infected person coughs or sneezes.

    COVID-19 causes severe acute respiratory illness (SARS-COV-2). The first incidence was recorded in Wuhan, China, in 2019.  Since then it spreads leading to a pandemic.

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Solar Energy
A review of studies on using nanofluids in flat-plate solar collectors
...Show More Authors

Continuous escalation of the cost of generating energy is preceded by the fact of scary depletion of the energy reserve of the fossil fuels and pollution of the environment as developed and developing countries burn these fuels. To meet the challenge of the impending energy crisis, renewable energy has been growing rapidly in the last decade. Among the renewable energy sources, solar energy is the most extensively available energy, has the least effect on the environment, and is very efficient in terms of energy conversion. Thus, solar energy has become one of the preferred sources of renewable energy. Flat-plate solar collectors are one of the extensively-used and well-known types of solar collectors. However, the effectiveness of the coll

... Show More
Scopus (135)
Crossref (126)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Iraqi Journal Of Physics
Transfocation Technique to Overcome Atmospheric Scintillation Effect on a Laser Detection and Tracking System (LDTS)
...Show More Authors

Atmospheric transmission is disturbed by scintillation, where scintillation caused more beam divergence. In this work target image spot radius was calculated in presence of atmospheric scintillation. The calculation depend on few relevant equation based on atmospheric parameter (for Middle East), tracking range, expansion ratio of applied beam expander's, receiving unit lens F-number, and the laser wavelength besides photodetector parameter. At maximum target range Rmax =20 km, target image radius is at its maximum Rs=0.4 mm. As the range decreases spot radius decreases too, until the range reaches limit (4 km) at which target image spot radius at its minimum value (0.22 mm). Then as the range decreases, spot radius increases due to geom

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 05 2022
Journal Name
Baghdad Science Journal
MSRD-Unet: Multiscale Residual Dilated U-Net for Medical Image Segmentation
...Show More Authors

Semantic segmentation is an exciting research topic in medical image analysis because it aims to detect objects in medical images. In recent years, approaches based on deep learning have shown a more reliable performance than traditional approaches in medical image segmentation. The U-Net network is one of the most successful end-to-end convolutional neural networks (CNNs) presented for medical image segmentation. This paper proposes a multiscale Residual Dilated convolution neural network (MSRD-UNet) based on U-Net. MSRD-UNet replaced the traditional convolution block with a novel deeper block that fuses multi-layer features using dilated and residual convolution. In addition, the squeeze and execution attention mechanism (SE) and the s

... Show More
View Publication Preview PDF
Scopus (8)
Crossref (5)
Scopus Crossref
Publication Date
Wed Feb 01 2023
Journal Name
International Journal Of Electrical And Computer Engineering
Classification of COVID-19 from CT chest images using Convolutional Wavelet Neural Network
...Show More Authors

<p>Analyzing X-rays and computed tomography-scan (CT scan) images using a convolutional neural network (CNN) method is a very interesting subject, especially after coronavirus disease 2019 (COVID-19) pandemic. In this paper, a study is made on 423 patients’ CT scan images from Al-Kadhimiya (Madenat Al Emammain Al Kadhmain) hospital in Baghdad, Iraq, to diagnose if they have COVID or not using CNN. The total data being tested has 15000 CT-scan images chosen in a specific way to give a correct diagnosis. The activation function used in this research is the wavelet function, which differs from CNN activation functions. The convolutional wavelet neural network (CWNN) model proposed in this paper is compared with regular convol

... Show More
View Publication Preview PDF
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Performance of Case-Based Reasoning Retrieval Using Classification Based on Associations versus Jcolibri and FreeCBR: A Further Validation Study
...Show More Authors

View Publication Preview PDF
Scopus (5)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Thu Jun 16 2022
Journal Name
Al-khwarizmi Engineering Journal
Path Planning and Obstacle Avoidance of a Mobile Robot based on GWO Algorithm
...Show More Authors

planning is among the most significant in the field of robotics research.  As it is linked to finding a safe and efficient route in a cluttered environment for wheeled mobile robots and is considered a significant prerequisite for any such mobile robot project to be a success. This paper proposes the optimal path planning of the wheeled mobile robot with collision avoidance by using an algorithm called grey wolf optimization (GWO) as a method for finding the shortest and safe. The research goals in this study for identify the best path while taking into account the effect of the number of obstacles and design parameters on performance for the algorithm to find the best path. The simulations are run in the MATLAB environment to test the

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Machine Learning And Data Mining In Pattern Recognition
A New Strategy for Case-Based Reasoning Retrieval Using Classification Based on Association
...Show More Authors

View Publication Preview PDF
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Fri Jan 15 2021
Journal Name
Psychology And Education Journal
Property and Possession in Gayl Jones’s Novel Corregidora: A Study in African American Literature and Literary Theory
...Show More Authors

the traumatic memory of their ancestors. The novel navigates sites of trauma, memory, and blues music while resisting the bourgeoisie-capitalist relationships that permeated not only white society but also African American communities. Jones’s novel presents the plight of an African American woman, Ursa, caught between the memory of her enslaved foremothers and her life in an emancipated world. The physical and spiritual exploitation of African American women who bear witness to the history of slavery in Corregidora materializes black women’s individuality. This article is framed by trauma studies as well as the Marxists’ concepts of commodification, accumulation, and production. Ursa, one of the Corregidora women, represents

... Show More
View Publication
Crossref