The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when diagnosing a tissue sample. Small, unnoticeable changes in pixel density may indicate the beginning of cancer or tear tissue in the early stages. These details even expert pathologists might miss. Artificial intelligence (A.I.) and D.L. revolutionized radiology by enhancing efficiency and accuracy of both interpretative and non-interpretive jobs. When you look at AI applications, you should think about how they might work. Convolutional Neural Network (C.N.N.) is a part of D.L. that can be used to diagnose knee problems. There are existing algorithms that can detect and categorize cartilage lesions, meniscus tears on M.R.I., offer an automated quantitative evaluation of healing, and forecast who is most likely to have recurring meniscus tears based on radiographs.
Background: Non-small cell lung cancer (NSCLC) is caused of 85% of all lung cancers. Among the most important factors for lung tumor growth and proliferation are the tyrosine kinase receptors that coded by the epidermal growth factor recep-tor (EGFR) gene. Activation of EGFR ultimately leads to developing of lung cancer. The present study was undertaken with an objective to detect EGFR mutations in bronchial wash from Iraqi patients with NSCLC before treatment. Methods: DNA was extracted from bronchial wash samples collected from 50 patients with NSCLC by using a Qiamp DNA Mini Kit (Qiagen, Hilden, Germany). Then, EGFR mutations were determined by using real-time RCR combined with two technologies, Amplification Refractory Mutation System (
... Show MoreBackground: Non-small cell lung cancer (NSCLC) is caused of 85% of all lung cancers. Among the most important factors for lung tumor growth and proliferation are the tyrosine kinase receptors that coded by the epidermal growth factor recep-tor (EGFR) gene. Activation of EGFR ultimately leads to developing of lung cancer. The present study was undertaken with an objective to detect EGFR mutations in bronchial wash from Iraqi patients with NSCLC before treatment. Methods: DNA was extracted from bronchial wash samples collected from 50 patients with NSCLC by using a Qiamp DNA Mini Kit (Qiagen, Hilden, Germany). Then, EGFR mutations were determined by using real-time RCR combined with two technologies, Amplification Refractory Mutation System (
... Show MoreThe Sebkha is considered the evaporative geomorphological features, where climate plays an active role. It forms part of the surface features in Mesopotamia plain of Iraqi, which is the most fertile lands, and because of complimentary natural and human factors turned most of the arable land to the territory of Sebkha lands. The use satellite image (Raw Data), Landsat 30M Mss for the year 1976 Landsat 7 ETM, and the Landsat 8 for year 2013 (LDCM) for the summer Landsat Data Continuity Mission and perform geometric correction, enhancements, and Subset image And a visual analysis Space visuals based on the analysis of spectral fingerprints earth's This study has shown that the best in the discrimination of Sebkha Remote sensing techniques a
... Show MoreObjectives: The present study aims at detecting the depression among nurses who provide care for infected patients with corona virus phenomenon and to find out relationships between the depression and their demographic characteristics of age, gender, marital status, type of family, education, and years of experience of nurses in heath institutions, infection by corona virus, and their participation in training courses.
Methodology: A descriptive study is established for a period from October 10th, 2020 to April 15th, 2021. The study is conducted on a purposive (non-probability) sample of (100) nurse who are providing care for patients with COVID-19 and they are selected from the isolation wards. The instrument of the study is develope
The main objective of this paper is to develop and validate flow injection method, a precise, accurate, simple, economic, low cost and specific turbidimetric method for the quantitative determination of mebeverine hydrochloride (MbH) in pharmaceutical preparations. A homemade NAG Dual & Solo (0-180º) analyser which contains two identical detections units (cell 1 and 2) was applied for turbidity measurements. The developed method was optimized for different chemical and physical parameters such as perception reagent concentrations, aqueous salts solutions, flow rate, the intensity of the sources light, sample volume, mixing coil and purge time. The correlation coefficients (r) of the developed method were 0.9980 and 0.9986 for cell
... Show MoreFunctionalized Multi-Walled Carbon Nanotubes (MWCNTs-OH) network with thickness 4μm was made by the vacuum filtration from suspension (FFS) method. The morphology, structure and optical properties of the MWCNTs film were characterized by SEM and UV-Vis. spectra techniques. The SEM images reflected highly ordered network in the form of ropes or bundles with close-packing which looks like spaghetti. The absorbance spectrum revealed that the network has a good absorbance in the UV-Vis. region. The gas sensor system was used to test the MWCNT-OH network to detect NH3gas at room temperature. The resistance of the sensor was increased when exposed to the NH3gas. The sensitivities of the network w
... Show MoreIn this research, an enhancement in lubricating, rheological, and filtration properties of unweighted water-based mud is fundamentally investigated using XC polymer NPs with 0.2gm, 0.5gm, 1gm, 2gm, and 4gm concentrations. Bentonite, that had been used in the preparation of unweighted water-based mud, was characterized using XRF-1800 Sequential X-ray Fluorescence Spectrometer, XRD-6100/7000 X-ray Diffractometer, and Malvern Mastersizer 2000 particle size analyzer, respectively. Lubricating, rheology and filtration properties of unweighted water-based mud were measured at room temperature (35°C) using OFITE EP and Lubricity Tester, OFITE Model 900 Viscometer, and OFITE Low-Pressure Filter Press, respectively. XC Polymer N
... Show More