The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when diagnosing a tissue sample. Small, unnoticeable changes in pixel density may indicate the beginning of cancer or tear tissue in the early stages. These details even expert pathologists might miss. Artificial intelligence (A.I.) and D.L. revolutionized radiology by enhancing efficiency and accuracy of both interpretative and non-interpretive jobs. When you look at AI applications, you should think about how they might work. Convolutional Neural Network (C.N.N.) is a part of D.L. that can be used to diagnose knee problems. There are existing algorithms that can detect and categorize cartilage lesions, meniscus tears on M.R.I., offer an automated quantitative evaluation of healing, and forecast who is most likely to have recurring meniscus tears based on radiographs.
The aim of the present study was to distinguish between healthy children and those with epilepsy by electroencephalography (EEG). Two biomarkers including Hurst exponents (H) and Tsallis entropy (TE) were used to investigate the background activity of EEG of 10 healthy children and 10 with epilepsy. EEG artifacts were removed using Savitzky-Golay (SG) filter. As it hypothesize, there was a significant changes in irregularity and complexity in epileptic EEG in comparison with healthy control subjects using t-test (p< 0.05). The increasing in complexity changes were observed in H and TE results of epileptic subjects make them suggested EEG biomarker associated with epilepsy and a reliable tool for detection and identification of this di
... Show MoreThe recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show MoreThere are many events that took place in Al Mosul province between 2013 and 2018. These events led to many changes in the area under study. These changes involved a decrease in agricultural crops and water due to the population leaving the area. Therefore, it is imperative that planners, decision-makers, and development officials intervene in order to restore the region's activity in terms of environment and agriculture. The aim of this research is to use remote sensing (RS) technique and geographic information system (GIS) to detect the change that occurred in the mentioned period. This was achieved through the use of the ArcGIS software package for the purpose of assessing the state of lands of agricultural crops and
... Show MoreData mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimum err
... Show MoreData mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show MoreThe aim of the research is to identify the effectiveness of the educational pillars strategy based on Vygotsky's theory in mathematical achievement and information processing of first-grade intermediate students. In pursuit of the research objectives, the experimental method was used, and the quasi-experimental design was used for two equivalent groups, one control group taught traditionally and the other experi-mental taught according to the educational pillars strategy. The research sample consisted of (66) female students from the first intermediate grade, who were inten-tionally chosen after ensuring their equivalence, taking into account several factors, most notably chronological age and their level of mathematics, and they we
... Show MoreIn this article, we developed a new loss function, as the simplification of linear exponential loss function (LINEX) by weighting LINEX function. We derive a scale parameter, reliability and the hazard functions in accordance with upper record values of the Lomax distribution (LD). To study a small sample behavior performance of the proposed loss function using a Monte Carlo simulation, we make a comparison among maximum likelihood estimator, Bayesian estimator by means of LINEX loss function and Bayesian estimator using square error loss (SE) function. The consequences have shown that a modified method is the finest for valuing a scale parameter, reliability and hazard functions.
Abstract
The aim of the research is to identify the level of awareness and emotional experience among university students and to identify the effect of the educational program based on (Guttmann) model for developing awareness and emotional experience among university students by verifying the validity of the following zero hypotheses: 1) There are no statistically significant differences in the development of awareness and emotional experience among university students at the level of (0.05) between the mean scores of the experimental group in the pre and post-tests. 2) There are no statistically significant differences in the development of awareness and emotional experience among university students at the lev
... Show MoreIn recent years, with the growing size and the importance of computer networks, it is very necessary to provide adequate protection for users data from snooping through the use of one of the protection techniques: encryption, firewall and intrusion detection systems etc. Intrusion detection systems is considered one of the most important components in the computer networks that deal with Network security problems. In this research, we suggested the intrusion detection and classification system through merging Fuzzy logic and Artificial Bee Colony Algorithm. Fuzzy logic has been used to build a classifier which has the ability to distinguish between the behavior of the normal user and behavior of the intruder. The artificial bee colony al
... Show More