The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when diagnosing a tissue sample. Small, unnoticeable changes in pixel density may indicate the beginning of cancer or tear tissue in the early stages. These details even expert pathologists might miss. Artificial intelligence (A.I.) and D.L. revolutionized radiology by enhancing efficiency and accuracy of both interpretative and non-interpretive jobs. When you look at AI applications, you should think about how they might work. Convolutional Neural Network (C.N.N.) is a part of D.L. that can be used to diagnose knee problems. There are existing algorithms that can detect and categorize cartilage lesions, meniscus tears on M.R.I., offer an automated quantitative evaluation of healing, and forecast who is most likely to have recurring meniscus tears based on radiographs.
The Digital Elevation Model (DEM) has been known as a quantitative description of the surface of the Earth, which provides essential information about the terrain. DEMs are significant information sources for a number of practical applications that need surface elevation data. The open-source DEM datasets, such as the Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM), and the Advanced Land Observing Satellite (ALOS) usually have approximately low accuracy and coarser resolution. The errors in many datasets of DEMs have already been generally examined for their importance, where their quality could be affected within different aspects, including the types of sensors, algor
... Show MoreFree Space Optical (FSO) technology offers highly directional, high bandwidth communication channels. This technology can provide fiber-like data rate over short distances. In order to improve security associated with data transmission in FSO networks, a secure communication method based on chaotic technique is presented. In this paper, we have turned our focus on a specific class of piece wise linear one-dimensional chaotic maps. Simulation results indicate that this approach has the advantage of possessing excellent correlation property. In this paper we examine the security vulnerabilities of single FSO links and propose a solution to this problem by implementing the chaotic signal generator “reconfigurable tent map”. As synchronizat
... Show MoreAbstract. Full-waveform airborne laser scanning data has shown its potential to enhance available segmentation and classification approaches through the additional information it can provide. However, this additional information is unable to directly provide a valid physical representation of surface features due to many variables affecting the backscattered energy during travel between the sensor and the target. Effectively, this delivers a mis-match between signals from overlapping flightlines. Therefore direct use of this information is not recommended without the adoption of a comprehensive radiometric calibration strategy that accounts for all these effects. This paper presents a practical and reliable radiometric calibration r
... Show MoreAn experimental study is conducted to investigate the effect of heat flux distribution on the boiling safety factor of its cooling channel. The water is allowed to flow in a horizontal circular pipe whose outlet surface is subjected to different heat flux profiles. Four types of heat flux distribution profiles are used during experiments: (constant distribution profile, type a, triangle distribution profile with its maximum in channel center, type b, triangle distribution profile with its maximum in the channel inlet, type c, and triangle distribution profile with its maximum in the channel outlet, type d). The study is conducted using heat sources of (1000 and 2665W), water flow rates of (5, 7 and 9 lit/min). The water
... Show MoreSensitive information of any multimedia must be encrypted before transmission. The dual chaotic algorithm is a good option to encrypt sensitive information by using different parameters and different initial conditions for two chaotic maps. A dual chaotic framework creates a complex chaotic trajectory to prevent the illegal use of information from eavesdroppers. Limited precisions of a single chaotic map cause a degradation in the dynamical behavior of the communication system. To overcome this degradation issue in, a novel form of dual chaos map algorithm is analyzed. To maintain the stability of the dynamical system, the Lyapunov Exponent (LE) is determined for the single and dual maps. In this paper, the LE of the single and dual maps
... Show MoreLiquefied petroleum gases (LPG) consist of hydrocarbons obtained by refining crude oil, either from propane or butane or a mixture of the two. There are often other components such as propylene, butylene or other hydrocarbons, but they are not the main component. The study aims to review previous studies dealing with designing an LPG system to deliver gas to residential campuses and buildings. LPG is extracted from natural gas NG by several processes, passing through fractionation towers and then pressuring into CNG storage tanks. Gas contains several problems, including gas leakage through the pipes and leads to fires or explosions in LPG storage and distribution tanks, so safety conditions were taken in the design and implementation. T
... Show MoreSorting and grading agricultural crops using manual sorting is a cumbersome and arduous process, in addition to the high costs and increased labor, as well as the low quality of sorting and grading compared to automatic sorting. the importance of deep learning, which includes the artificial neural network in prediction, also shows the importance of automated sorting in terms of efficiency, quality, and accuracy of sorting and grading. artificial neural network in predicting values and choosing what is good and suitable for agricultural crops, especially local lemons.
HM Al-Dabbas, RA Azeez, AE Ali, IRAQI JOURNAL OF COMPUTERS, COMMUNICATIONS, CONTROL AND SYSTEMS ENGINEERING, 2023
Estimating the semantic similarity between short texts plays an increasingly prominent role in many fields related to text mining and natural language processing applications, especially with the large increase in the volume of textual data that is produced daily. Traditional approaches for calculating the degree of similarity between two texts, based on the words they share, do not perform well with short texts because two similar texts may be written in different terms by employing synonyms. As a result, short texts should be semantically compared. In this paper, a semantic similarity measurement method between texts is presented which combines knowledge-based and corpus-based semantic information to build a semantic network that repre
... Show More