Six proposed simply supported high strength-steel fiber reinforced concrete (HS-SFRC) beams reinforced with FRP (fiber reinforced polymer) rebars were numerically tested by finite element method using ABAQUS software to investigate their behavior under the flexural failure. The beams were divided into two groups depending on their cross sectional shape. Group A consisted of four trapezoidal beams with dimensions of (height 200 mm, top width 250 mm, and bottom width 125 mm), while group B consisted of two rectangular beams with dimensions of (125 ×200) mm. All specimens have same total length of 1500 mm, and they were also considered to be made of same high strength concrete designed material with 1% volume fraction of steel fiber.
... Show MoreThis paper describes flexural behavior of two spans continuous rectangular concrete beams reinforced with mild steel and partially prestressing strands, to evaluate using different prestressing level and prestressing area in continuous prestressed beams at serviceability and ultimate stages. Six continuous concrete beams with 4550 mm length reinforced with mild steel reinforcement and partially prestressed with two prestressing levels of (0.7fpy or 0.55fpy.) of and different amount of 12.7 mm diameter seven wire steel strand were used. Test results showed that the partially prestressed reinforced beams with higher prestressing level exhibited the narrowest crack width, smallest deflection and strain in both steel and concrete at ul
... Show MoreThis paper focuses on Load distribution factors for horizontally curved composite concrete-steel girder bridges. The finite-element analysis software“SAP2000” is used to examine the key parameters that can influence the distribution factors for horizontally curved composite steel
girders. A parametric study is conducted to study the load distribution characteristics of such bridge system due to dead loading and AASHTO truck loading using finite elements method. The key parameters considered in this study are: span-to-radius of curvature ratio, span length, number of girders, girders spacing, number of lanes, and truck loading conditions. The results have shown that the curvature is the most critical factor which plays an important
The development of new building materials, able of absorbing more energy is an active research area. Engineering Cementitious Composite (ECC) is a class of super-elastic fiberreinforced cement composites characterized by high ductility and tight crack width control. The use of bendable concrete produced from Portland Limestone Cement (PLC) may lead to an interest in new concrete mixes. Impact results of bendable concrete reinforced with steel mesh and polymer fibers will provide data for the use of this concrete in areas subject to impact loading. The experimental part consisted of compressive strength and impact resistance tests along with a result comparison with unreinforced concrete. Concrete samples, with dimensions of 100×
... Show MoreThe biosorption of lead (II) and chromium (III) onto dead anaerobic biomass (DAB) in single and binary systems has been studied using fixed bed adsorber. A general rate multi- component model (GRM) has been utilized to predict the fixed bed breakthrough curves for single and dual- component system. This model considers both external and internal mass transfer resistances as well as axial dispersion with non-liner multi-component isotherm (Langmuir model). The effects of important parameters, such as flow rate, initial concentration and bed height on the behavior of breakthrough curves have been studied. The equilibrium isotherm model parameters such as maximum uptake capacities for lead (II) and chromium (III) were found to be 35.12 and
... Show MoreIn this paper, a new equivalent lumped parameter model is proposed for describing the vibration of beams under the moving load effect. Also, an analytical formula for calculating such vibration for low-speed loads is presented. Furthermore, a MATLAB/Simulink model is introduced to give a simple and accurate solution that can be used to design beams subjected to any moving loads, i.e., loads of any magnitude and speed. In general, the proposed Simulink model can be used much easier than the alternative FEM software, which is usually used in designing such beams. The obtained results from the analytical formula and the proposed Simulink model were compared with those obtained from Ansys R19.0, and very good agreement has been shown. I
... Show MoreThis research shows the experimental results of the bending moment in a flexible and rigid raft foundation rested on dense sandy soil with different embedded depth throughout 24 tests. A physical model of dimensions (200mm*200mm) and (320) mm in height was constructed with raft foundation of (10) mm thickness for flexible raft and (23) mm for rigid raft made of reinforced concrete. To imitate the seismic excitation shaking table skill was applied, the shaker was adjusted to three frequencies equal to (1Hz,2Hz, and 3Hz) and displacement magnitude of (13) mm, the foundation was located at four different embedment depths (0,0.25B = 50mm,0.5B = 100mm, and B = 200mm), where B is the raft width. Generally, the maximum bending
... Show MoreRutting has a significant impact on the pavements' performance. Rutting depth is often used as a parameter to assess the quality of pavements. The Asphalt Institute (AI) design method prescribes a maximum allowable rutting depth of 13mm, whereas the AASHTO design method stipulates a critical serviceability index of 2.5 which is equivalent to an average rutting depth of 15mm. In this research, static and repeated compression tests were performed to evaluate the permanent strain based on (1) the relationship between mix properties (asphalt content and type), and (2) testing temperature. The results indicated that the accumulated plastic strain was higher during the repeated load test than that during the static load tests. Notably, temperatur
... Show MoreThe dynamic response of foundation rest on collapsible soil in dry and soaked states is studied through wide experimental programmed. Gypseous soil from Tikrit governorate area was obtained and subjected to various physical and chemical analysis to determine its properties. Steel rectangular footing (400x200x20) mm is manufactured. The machine is fitted to the footing, then the model machine foundation is placed centrally over the prepared soil layer in steel container (1200x 1000x1000)mm with proper care to maintain the center of gravity of whole system lie in the same vertical line with container.Then, the footing is subjected to vertical harmonic loading using a rotating mass type mechanical oscillator to simulate different dynamic lo
... Show More