Low-temperature stratification, high-volumetric storage capacity, and less-complicated material processing make phase-changing materials (PCMs) very suitable candidates for solar energy storage applications. However, their poor heat diffusivities and suboptimal containment designs severely limit their decent storage capabilities. In these systems, the arrangement of tubes conveying the heat transport fluid (HTF) plays a crucial role in heat communication between the PCM and HTF during phase transition. This study investigates a helical coil tube-and-shell thermal storage system integrated with a novel central return tube to enhance heat transfer effectiveness. Three-dimensional computational fluid dynamics simulations compare the proposed design against a baseline helical coil system without a return tube under equivalent conditions. Outcomes quantify the return tube's efficacy in augmenting heat transfer uniformity and accelerating phase transition. Adding the return tube markedly boosts heat storage and recovery rates, increasing charging by 88% and discharging by 56% versus the baseline. Moreover, total phase transition time reduces by 48% for melting and 36% for solidification with the return tube. The accelerated charging stems from sustained convective heat transfer inside the return tube even as the molten layer thickens. Meanwhile, enhanced solidification results from ongoing cooling of inner regions. Isotherm analysis visualizes the return tube's efficacy in maintaining thermal uniformity throughout the phase transition process. Overall, the return tube significantly improves PCM thermal response, demonstrating a novel but straightforward approach to address heat transfer limitations in latent thermal storage systems.
Many isolated rural communities are located in regions where there is an abundant and reliable supply of solar energy, but where the distance to the nearest power station is many tens or even hundreds of kilometre. It is therefore mainly in these areas that rural electrification is now being provided by PV generators. since Stand-Alone PV generator can offer the most cost-effective and reliable option for providing power needed in remote places. Accordingly these isolated rural canters are fitted with PV for lighting, a refrigerator, a television and socket to supply kitchen appliances
Examining of passeriform birds collected in Baghdad area revealed presence of seven species of blood parasites belonging to three genera, Haemoproteus, Leucocytozoon, and Plasmodium. Records of microfilariae (larval nematodes) were also indicated. Results showed wide distribution of Plasmodium relictum among passerine hosts.
The central marshes are one of the most important wetlands/ecosystems in the southern area of Iraq. This study evaluates the bed soil's mechanical, physical, and chemical properties at certain southern Iraqi central marshes sites. This was conducted to investigate their types and suitability for enhancing the agricultural reality of most field crops and for construction purposes. Soil samples were collected from 15 sites at 10-100 cm depth. Hence, numerous parameters were determined: index properties, unconfined compressive strength, direct shear strength, consolidation, texture, and sieve analysis, water content, specific gravity, dry density, permeability, pH, total soluble salts (TSS), organic materials (OM) and total
... Show MoreAcuaria skrjabini Ozerskaya, 1926 and Dispharynx nasuta (Rudolphi, 1819) Stiles and Hassall, 1920, were found embedded in the mucosa of the gizzards of 26.97% of house sparrows, Passer domesticus biblicus collected in Baghdad City. Their morphometric and meristic features were expressed and compared with that reported in other studies.
This work deals with the nematode parasitesfrom the midgut of (16) specimens of Green
toad (Bufo viridis) Laurenti, 1768 collected from Baghdad area,central Iraq.
The parasites are:Cosmocercoides variabilis (Cosmocercidae) that considered as the first
report in Iraq on it and Oswaldocruzia filiformis (Molineidae).
Carbonate-clastic succession which includes the Shu'aiba, Nahr Umr and Mauddud formations are representing a part of the Barremian-Aptian Sequence (Wasi'a Group). The present study includes three boreholes (Ba-1, 4 and 8) within the Balad Oil Field. The study area is located in central Iraq. This field represents a subsurface anticline with a northwest to southeast direction axis within the Mesopotamian Zone. Eight types of microfacies were recognized in the succession of the Mauddud and Shu’aiba formations. These microfacies represent shallow open marine, restricted and semi-restricted, reef - back reef, deep open marine and basinal depositional environments. While Nahr Umr Formation includes two successions, the first is the upp
... Show MoreThis research presents a numerical study to simulate the heat transfer by forced convection as a result of fluid flow inside channel’s with one-sided semicircular sections and fully filled with porous media. The study assumes that the fluid were Laminar , Steady , Incompressible and inlet Temperature was less than Isotherm temperature of a Semicircular sections .Finite difference techniques were used to present the governing equations (Momentum, Energy and Continuity). Elliptical Grid is Generated using Poisson’s equations . The Algebraic equations were solved numerically by using (LSOR (.This research studied the effect of changing the channel shapes on fluid flow and heat transfer in two cases ,the first: cha
... Show MoreRotating blades are the important parts in gas turbines. Hence, an accurate mathematical estimation (F.E.M) of the stresses and deformations characteristics was required in the design applications to avoid failure. In recent year’s there are researchers interest in the effect of temperature on solid bodies has greatly increased, The main of this study investigated the thermal and rotational effects. So, the thermal stresses due to high pressure and temperature are studies, also determine the steady state stresses and deformations of rotating blades due to mechanical effect. Many parameters such as thickness and centre of rotating are investigated in this paper. The
... Show MoreThermal conductivity of compacted bentonite is one of the most important properties where this type of clay is proposed for use as a buffer material. In this study, Lee's disc method was used to measure the thermal conductivity of compacted bentonite specimens. The experimental results have been analyzed to observe the three major factors affecting the thermal conductivity of bentonite buffer material. While the clay density reaches to a target value, the measurement is taken to evaluate the thermal conductivity. By repeating this procedure, a relationship between clay dry density and thermal conductivity has been established in specimens after adjusting the water contents of the bentonite by placing its specimens in a drying oven for diffe
... Show More