Low-temperature stratification, high-volumetric storage capacity, and less-complicated material processing make phase-changing materials (PCMs) very suitable candidates for solar energy storage applications. However, their poor heat diffusivities and suboptimal containment designs severely limit their decent storage capabilities. In these systems, the arrangement of tubes conveying the heat transport fluid (HTF) plays a crucial role in heat communication between the PCM and HTF during phase transition. This study investigates a helical coil tube-and-shell thermal storage system integrated with a novel central return tube to enhance heat transfer effectiveness. Three-dimensional computational fluid dynamics simulations compare the proposed design against a baseline helical coil system without a return tube under equivalent conditions. Outcomes quantify the return tube's efficacy in augmenting heat transfer uniformity and accelerating phase transition. Adding the return tube markedly boosts heat storage and recovery rates, increasing charging by 88% and discharging by 56% versus the baseline. Moreover, total phase transition time reduces by 48% for melting and 36% for solidification with the return tube. The accelerated charging stems from sustained convective heat transfer inside the return tube even as the molten layer thickens. Meanwhile, enhanced solidification results from ongoing cooling of inner regions. Isotherm analysis visualizes the return tube's efficacy in maintaining thermal uniformity throughout the phase transition process. Overall, the return tube significantly improves PCM thermal response, demonstrating a novel but straightforward approach to address heat transfer limitations in latent thermal storage systems.
In this work, MWCNT in the epoxy can be prepared at room temperature and thickness (1mm) at different concentration of CNTs powder. Optical properties of multi-walled carbon nanotubes (CNTs) reinforced epoxy have been measured in the range of (300-800)nm. The electronic transition in pure epoxy and CNT/epoxy indicated direct allowed transition. Also, it is found that the energy gap of epoxy is 4.1eV and this value decreased within range of (4.1-3.5)eV when the concentration of CNT powder increased from (0.001-0.1)% respectively.
The optical constants which include (the refractive index (n), the extinction coefficient (k), real (ε1) and imaginarily (ε2) part of dielectric constant calculated in the of (300-800)nm at different concent
Abstract
This work deals with a numerical investigation to evaluate the utilization of a water pipe buried inside a roof to reduce the heat gain and minimize the transmission of heat energy inside the conditioning space in summer season. The numerical results of this paper showed that the reduction in heat gain and energy saving could be occurred with specific values of parameters, like the number of pipes per square meter, the ratio of pipe diameter to the roof thickness, and the pipe inlet water temperature. Comparing with a normal roof (without pipes), the results indicated a significant reduction in energy heat gain which is about 37.8% when the number of pipes per m
... Show MoreThis study deals with free convection heat transfer for the outer surface of two
cylinders of the shape of (Triangular & Rectangular fined cylinders with 8-fins),
putted into two different spaces; small one with dimension of (Length=1.2m,
height=1m, width=0.9m) and large one with dimension of (Length=3.6m, height =3m,
width=2.7m). The experimental work was conducted with air as a heat transport
medium. These cylinders were fixed at different slope angles (0o, 30o, 60o and 90o)
.The heat fluxes were (279, 1012, 1958, 3005, 4419) W/m2, where heat transferred by
convection and radiation. In large space, the results show that the heat transfer from
the triangular finned cylinder is maximum at a slope angle equals
In this review of literature, the light will be concentrated on the local drugs delivery systems for treating the periodontal diseases. Principles, types, advantages and indications of each type will be discussed in this paper.
Integration of laminar bubbling flow with heat transfer equations in a novel internal jacket airlift bioreactor using microbubbles technology was examined in the present study. The investigation was accomplished via Multiphysics modelling to calculate the gas holdup, velocity of liquid recirculation, mixing time and volume dead zone for hydrodynamic aspect. The temperature and internal energy were determined for heat transfer aspect.
The results showed that the concentration of microbubbles in the unsparged area is greater than the chance of large bubbles with no dead zones being observed in the proposed design. In addition the pressure, due to the recirculation velocity of liquid around the draft
... Show MoreA numerical investigation of mixed convection in a horizontal annulus filled with auniform fluid-saturated porous medium in the presence of internal heat generation is carried out.The inner cylinder is heated while the outer cylinder is cooled. The forced flow is induced by thecold outer cylinder rotating at a constant angular velocity. The flow field is modeled using ageneralized form of the momentum equation that accounts for the presence of porous mediumviscous, Darcian and inertial effects. Discretization of the governing equations is achieved usinga finite difference method. Comparisons with previous works are performed and the results showgood agreement. The effects of pertinent parameters such as the Richardson number and internalRay
... Show More