Low-temperature stratification, high-volumetric storage capacity, and less-complicated material processing make phase-changing materials (PCMs) very suitable candidates for solar energy storage applications. However, their poor heat diffusivities and suboptimal containment designs severely limit their decent storage capabilities. In these systems, the arrangement of tubes conveying the heat transport fluid (HTF) plays a crucial role in heat communication between the PCM and HTF during phase transition. This study investigates a helical coil tube-and-shell thermal storage system integrated with a novel central return tube to enhance heat transfer effectiveness. Three-dimensional computational fluid dynamics simulations compare the proposed design against a baseline helical coil system without a return tube under equivalent conditions. Outcomes quantify the return tube's efficacy in augmenting heat transfer uniformity and accelerating phase transition. Adding the return tube markedly boosts heat storage and recovery rates, increasing charging by 88% and discharging by 56% versus the baseline. Moreover, total phase transition time reduces by 48% for melting and 36% for solidification with the return tube. The accelerated charging stems from sustained convective heat transfer inside the return tube even as the molten layer thickens. Meanwhile, enhanced solidification results from ongoing cooling of inner regions. Isotherm analysis visualizes the return tube's efficacy in maintaining thermal uniformity throughout the phase transition process. Overall, the return tube significantly improves PCM thermal response, demonstrating a novel but straightforward approach to address heat transfer limitations in latent thermal storage systems.
The purpose of this interview study was to explore teachers’ perceptions of Response to Intervention (RtI) implementation in their school. Particularly, the study explored teachers’ knowledge of RtI, teachers’ perceptions of RtI their intervention/instruction in school, and teachers’ suggestions of RtI implementation in their school. The study design was a qualitative interview in nature and data were collected from face-to-face interviews with four teachers in one school. The findings revealed that RtI means to identify students’ problems; the positive teachers’ perceptions of their implementation included: (a) students who demonstrate progress through RtI are those who receive private education services, (b) progress monito
... Show MoreThe annual performance of a hybrid system of a flat plate photovoltaic thermal system and a solar thermal collector (PVT/ST) is numerically analyzed from the energy, exergy, and environmental (CO2 reduction) viewpoints. This system can produce electricity and thermal power simultaneously, with higher thermal power and exergy compared to conventional photovoltaic thermal systems. For this purpose, a 3D transient numerical model is developed for investigating the system's performance in four main steps: (1) investigating the effects of the mass flow rate of the working fluid (20 to 50 kg/h) on the temperature behavior and thermodynamic performance of the system, (2) studying the impacts of using glass covers on the different parts of the s
... Show MoreA field experiment was conducted during winter season of 2021 at a research station of college of agricultural engineering sciences, university of Baghdad to determine the response of active fertility percentage and seed yield and its components of faba bean (Vicia faba L. cv. Aguadulce) to distance between plants and spraying of nano and traditional boron. A Randomized Complete Block Design according to split-plots arrangement was used at three replicates. The main plots were three distances between plants (25, 35 and 45 cm), while the sub plots including spraying of distilled water only (control treatment), spraying of boron at a 100 mg L-1 and spraying of nano boron at two concentrations (1
... Show MoreWater pollution is an issue that can be exacerbated by drought as increased concentrations of unwanted substances are a consequence of lower water levels. Polluted water that flows into natural marshlands leads to the deposition of pollutants in the interior of the marsh. Here we present evidence that the interior of the Central Marsh (CM) in southern Iraq suffers from higher levels of pollution than areas closer to the source of water entering the marsh (the Euphrates River). A 1.7m embankment that halts the flow of the Euphrates is only infrequently breached and so the CM is effectively the terminal destination of the waters (and their associated pollutants and agricultural waste) flowing from the West of Iraq.
A range of water
... Show MoreSuggestion Plan for the Reclassification of U.N Publications in Central Library
The effect of refrigerant injection techniques on the performance of heat pump system based on exergy analysis was studied theoretically. Three refrigerant injection techniques were used; the first was achieved by injected vapour in volume ratios from 1 to 7% in the accumulator. The second was injection liquid refrigerant in the discharge line with the aid of Liquid Pressure Amplification (LPA) pump, with volume ratios from 1 to 10%. The third was a hybrid injection with volume ratios of injected vapour and liquid varied from 1 to 3% and 1 to 10%; respectively. The following improvements in cycle performance were observed. For vapour injection technique, the best ratio of injection was 5%, the exergy destruction reduced
... Show More