Low-temperature stratification, high-volumetric storage capacity, and less-complicated material processing make phase-changing materials (PCMs) very suitable candidates for solar energy storage applications. However, their poor heat diffusivities and suboptimal containment designs severely limit their decent storage capabilities. In these systems, the arrangement of tubes conveying the heat transport fluid (HTF) plays a crucial role in heat communication between the PCM and HTF during phase transition. This study investigates a helical coil tube-and-shell thermal storage system integrated with a novel central return tube to enhance heat transfer effectiveness. Three-dimensional computational fluid dynamics simulations compare the proposed design against a baseline helical coil system without a return tube under equivalent conditions. Outcomes quantify the return tube's efficacy in augmenting heat transfer uniformity and accelerating phase transition. Adding the return tube markedly boosts heat storage and recovery rates, increasing charging by 88% and discharging by 56% versus the baseline. Moreover, total phase transition time reduces by 48% for melting and 36% for solidification with the return tube. The accelerated charging stems from sustained convective heat transfer inside the return tube even as the molten layer thickens. Meanwhile, enhanced solidification results from ongoing cooling of inner regions. Isotherm analysis visualizes the return tube's efficacy in maintaining thermal uniformity throughout the phase transition process. Overall, the return tube significantly improves PCM thermal response, demonstrating a novel but straightforward approach to address heat transfer limitations in latent thermal storage systems.
A compact microstrip six-port reflectometer (SPR) with extended bandwidth is proposed in this paper. The design is based on using 16-dB multi-section coupled line directional couplers and a multi-section 3-dB Wilkinson power divider operating from 1 to 6 GHz. The proposed SPR employs only two calibration standards: a matched load and an open load. As compared to other dielectric substrates, fabricating the proposed SPR involves using a low-cost (FR4) substrate. A novel algorithm is also proposed to estimate the complex reflection coefficient over the frequency ranges at which the standard performance of the circuit components is not fully satisfied. The new algorithm is based on the circles’ intersection points, which have been de
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreObjective Thalassemic patients present with multiple immune abnormalities that may predispose them to oral Candida, however this has not been investigated. The aim of this study was to assess oral candidal colonization in a group of patients with β-thalassemia major both qualitatively and quantitatively. Study design The oral mycologic flora of 50 β-thalassemia major patients and 50 age- and sex-matched control subjects was assessed using the concentrated oral rinse technique. Candida species were identified using the germ tube test and the Vitek yeast identification system. Results Oral Candida was isolated from 37 patients (74%) and 28 healthy subjects (56%; P = .04). The mean candidal count was significantly higher in thalassemic patie
... Show MoreImage classification is the process of finding common features in images from various classes and applying them to categorize and label them. The main problem of the image classification process is the abundance of images, the high complexity of the data, and the shortage of labeled data, presenting the key obstacles in image classification. The cornerstone of image classification is evaluating the convolutional features retrieved from deep learning models and training them with machine learning classifiers. This study proposes a new approach of “hybrid learning” by combining deep learning with machine learning for image classification based on convolutional feature extraction using the VGG-16 deep learning model and seven class
... Show MoreEndometriosis is a painful disease that affects around 5% of women of reproductive age. In endometriosis, ectopic endometrial cells or seeded endometrial debris grow in abnormal locations including the peritoneal cavity. Common manifestations of endometriosis include dyspareunia, dysmenorrhea, chronic pelvic pain and often infertility and symptomatic relief or surgical removal are mainstays of treatment. Endometriosis both promotes and responds to estrogen imbalance, leading to intestinal bacterial estrobolome dysregulation and a subsequent induction of inflammation.
In the current study, we investigated the linkage be
Background:This is a prospective study of three children presented to us in the Orbital clinic in AL ShahidGazi Al Hariri Hospital with painless proptosiswith suspension of Hydatid disease.Objectives: : Orbital hydatid disease is a rare lesion accounting for less than 1% of the total lesions of the body (1, 2). Orbital cysts presented as a primary lesion in our study which is rare to have such lesion without involvement of other organs (3). Humans represent the intermediate host where the commonly affected organ are liver and the lung (10-15%) (4). Methods:This is a prospective study of three Children presented to us in the Orbital clinic in Al Shahid Ghazi Alhariri Hospital with painless proptosis with suspension of Hydatid disease, dep
... Show More