Preferred Language
Articles
/
1haVAowBVTCNdQwCR_WN
Augmenting the thermal response of helical coil latent-heat storage systems with a central return tube configuration
...Show More Authors

Low-temperature stratification, high-volumetric storage capacity, and less-complicated material processing make phase-changing materials (PCMs) very suitable candidates for solar energy storage applications. However, their poor heat diffusivities and suboptimal containment designs severely limit their decent storage capabilities. In these systems, the arrangement of tubes conveying the heat transport fluid (HTF) plays a crucial role in heat communication between the PCM and HTF during phase transition. This study investigates a helical coil tube-and-shell thermal storage system integrated with a novel central return tube to enhance heat transfer effectiveness. Three-dimensional computational fluid dynamics simulations compare the proposed design against a baseline helical coil system without a return tube under equivalent conditions. Outcomes quantify the return tube's efficacy in augmenting heat transfer uniformity and accelerating phase transition. Adding the return tube markedly boosts heat storage and recovery rates, increasing charging by 88% and discharging by 56% versus the baseline. Moreover, total phase transition time reduces by 48% for melting and 36% for solidification with the return tube. The accelerated charging stems from sustained convective heat transfer inside the return tube even as the molten layer thickens. Meanwhile, enhanced solidification results from ongoing cooling of inner regions. Isotherm analysis visualizes the return tube's efficacy in maintaining thermal uniformity throughout the phase transition process. Overall, the return tube significantly improves PCM thermal response, demonstrating a novel but straightforward approach to address heat transfer limitations in latent thermal storage systems.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Oct 01 2018
Journal Name
Radioelectronics And Communications Systems
Optical CDMA Coded STBC Based on Chaotic Technique in FSO Communication Systems
...Show More Authors

Free-Space Optical (FSO) can provide high-speed communications when the effect of turbulence is not serious. However, Space-Time-Block-Code (STBC) is a good candidate to mitigate this seriousness. This paper proposes a hybrid of an Optical Code Division Multiple Access (OCDMA) and STBC in FSO communication for last mile solutions, where access to remote areas is complicated. The main weakness effecting a FSO link is the atmospheric turbulence. The feasibility of employing STBC in OCDMA is to mitigate these effects. The current work evaluates the Bit-Error-Rate (BER) performance of OCDMA operating under the scintillation effect, where this effect can be described by the gamma-gamma model. The most obvious finding to emerge from the analysis

... Show More
View Publication
Scopus (6)
Crossref (6)
Scopus Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Ssrn Electronic Journal
Increasing Safety in Highways Transit Systems by Using Ethical Artificial Intelligence AI
...Show More Authors

“Smart city” projects have become fully developed and are actively using video analytics. Our study looks at how video analytics from surveillance cameras can help manage urban areas, making the environment safer and residents happier. Every year hundreds of people fall on subway and railway lines. The causes of these accidents include crowding, fights, sudden health problems such as dizziness or heart attacks, as well as those who intentionally jump in front of trains. These accidents may not cause deaths, but they cause delays for tens of thousands of passengers. Sometimes passers-by have time to react to the event and try to prevent it, or contact station personnel, but computers can react faster in such situations by using ethical

... Show More
View Publication
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Journal Of Engineering
Convolutional Multi-Spike Neural Network as Intelligent System Prediction for Control Systems
...Show More Authors

The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Ieee Access
Enhancing Speed and Imperceptibility in Watermarking Systems by Leveraging Galois Field Tables
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Sat Jun 04 2022
Journal Name
Journal Of Inorganic And Organometallic Polymers And Materials
Improving the Mechanical Properties, Roughness, Thermal Stability, and Contact Angle of the Acrylic Polymer by Graphene and Carbon Fiber Doping for Waterproof Coatings
...Show More Authors

View Publication
Crossref (12)
Crossref
Publication Date
Sun Aug 10 2025
Journal Name
Iraqi Journal Of Science
UNSTEADY PRESSURE DROP AND HEAT TRANSFER OFMAGNETOHYDRODYNAMIC ANNULAR TWO-PHASE INRECTANGULAR CHANNEL
...Show More Authors

An annular two-phase, steady and unsteady, flow model in which a conductingfluid flow under the action of magnetic field is concavely. Two models arepresented, in the model one; the magnetic field is perpendicular to the long side ofthe channel, while in the model two is perpendicular to the short side. Also, westudy, to some extent the single-phase liquid flow.It is found that the motion and heat transfer equations are controlled by differentdimensionless parameters namely, Reynolds, Hartmann, Prandtl, and Poiseuilleparameters. The Laplace transform technique is used to solve each of the motion andheat transfer equations. The effects of each of dimensionless parameters upon thevelocity and heat transfer is analyzed.A comprehensive study fo

... Show More
View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Computers, Materials & Continua
An Efficient Method for Heat Recovery Process and燭emperature燨ptimization
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
The Study of properties structure and some optical properties forcopper Oxid (CuO) Thin film prepared by thermal evaporation in Vacume
...Show More Authors

in this paper copper oxide (cuO thin films were prepared by the method of vacum thermal evaporation a pressure.

View Publication Preview PDF
Publication Date
Wed Mar 01 2023
Journal Name
Chalcogenide Letters
Preparation and analysis of Ag2Se1-xTe x thin film structure on the physical properties at various temperatures by thermal evaporation
...Show More Authors

Silver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm

... Show More
Publication Date
Wed May 03 2023
Journal Name
Chalcogenide Letters
Preparation and analysis of Ag2Se1-xTe x thin film structure on the physical properties at various temperatures by thermal evaporation
...Show More Authors

Silver selenide telluride Semiconducting (Ag2Se0.8Te0.2) thin films were by thermal evaporation at RT with thickness350 nm at annealing temperatures (300, 348, 398, and 448) °K for 1 hour on glass substrates .using X-ray diffraction, the structural characteristics were calculated as a function of annealing temperatures with no preferential orientation along any plane. Atomic force microscopy (AFM) and X-ray techniques are used to analyze the Ag2SeTe thin films' physical makeup and properties. AFM techniques were used to analyze the surface morphology of the Ag2SeTe films, and the results showed that the values for average diameter, surface roughness, and grain size mutation increased with annealing temperature (116.36-171.02) nm The transm

... Show More