Soil compaction is one of the most harmful elements affecting soil structure, limiting plant growth and agricultural productivity. It is crucial to assess the degree of soil penetration resistance to discover solutions to the harmful consequences of compaction. In order to obtain the appropriate value, using soil cone penetration requires time and labor-intensive measurements. Currently, satellite technologies, electronic measurement control systems, and computer software help to measure soil penetration resistance quickly and easily within the precision agriculture applications approach. The quantitative relationships between soil properties and the factors affecting their diversity contribute to digital soil mapping. Digital soil maps use machine learning algorithms to determine the above relationship. Algorithms include multiple linear regression (MLR), k-nearest neighbors (KNN), support vector regression (SVR), cubist, random forest (RF), and artificial neural networks (ANN). Machine learning made it possible to predict soil penetration resistance from huge sets of environmental data obtained from onboard sensors on satellites and other sources to produce digital soil maps based on classification and slope, but whose output must be verified if they are to be trusted. This review presents soil penetration resistance measurement systems, new technological developments in measurement systems, and the contribution of precision agriculture techniques and machine learning algorithms to soil penetration resistance measurement and prediction.
In this work, the calculation of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei are calculated. Each nuclide under study are divided into two parts; one for core part and the second for halo part. The core part are studied using harmonic-oscillator radial wave functions, while the halo part are studied using the radial wave functions of Woods-Saxon potential. A very good agreement are obtained with experimental data for matter density distributions and available size radii. Besides, the quadrupole moment for 11Li are generated.
In this investigation, the mechanical properties and microstructure of Metal Matrix Composites (MMCs) of Al.6061 alloy reinforced by ceramic materials SiC and Al2O3 with different additive percentages 2.5, 5, 7.5, and 10 wt.% for the particle size of 53 µm are studied. Metal matrix composites were prepared by stir casting using vortex technique and then treated thermally by solution heat treatment at 530 0C for 1 hr. and followed by aging at 175 0C with different periods. Mechanical tests were done for the samples before and after heat treatment, such as impact test, hardness test, and tensile test. Also, the microstructure of the metal matrix composites was examine
... Show MoreThe study aimed to investigate the effect of different times as follows 0.5, 1.00, 2.00 and 3.00 hrs, type of solvent (acetone, methanol and ethanol) and temperature (~ 25 and 50)ºc on curcumin percentage yield from turmeric rhizomes. The results showed significant differences (p? 0.05) in all variables. The curcumin content which were determined spectrophotometrically ranged between (0.55-2.90) %. The maximum yield was obtained when temperature, time and solvent were 50ºC, 3 hrs and acetone, respectively.
A new derivative of PAM, acrylamide was copolymerized with succinic anhydride, and the reaction product reacted with three dyes, anthocyanin, bromophenol, and thymol. The prepared polymers were characterized by X-ray diffraction, FT-IR and UV-visible spectroscopy, proton nuclear magnetic resonance spectrometry, and thermal analysis. FT-IR spectroscopy showed the disappearance of two bands near 3450 and 3380 cm-1 for the stretching vibrations of the primary amine which indicates for the formation of amides. The UV-photolysis of aqueous solutions of different concentrations of the polymers was studied. Polyacrylamide-g-succinic anhydride showed an increase in polymerization under light. An increase of ~ 50% was observed for a 200 mg/L
... Show MoreThis article aims to identify the views of media elites on citizen journalism, a new media genre that strays away from the foundations and ethics of professional journalism, thus calling for in-depth exploration and scrutiny into the genre and its commitment to the professional standards of journalism.
For this purpose, the researcher opted for the survey method by distributing a questionnaire to a purposive sample consisting of 407 media elites. The research is also based on Habermas' public sphere theory.
This study aimed to explore the manufacture of high-fat pellets for obesity induction diets in male Wistar rats and determined its effect on lipid profiles and body mass index. It was an experimental laboratory method with a post-test randomized control group. Formulation of high-fat pellets (HFD) and physico-chemical characteristics of pellets were conducted in September 2019. This study used about 28 male Wistar white rats, two months old, and 150-200 g body weight. Rats were acclimatized for seven days, then divided into four groups: 7 rats were given a standard feed of Confeed PARS CP594 (P0), and three groups (P1, P2, P3) were given high-fat feed (HFD FII) 30 g/head/day. The result showed that the mean fat content of Formula II pell
... Show MoreNew Azo ligands HL1 [2-Hydroxy-3-((5-mercapto-1,3,4-thiadiazol-2-yl)diazenyl)-1-naphth aldehyde] and HL2 [3-((1,5-Dimethyl-3-oxo-2-phenyl-2,3-dihydro-1H-pyrazol-4-yl)diazenyl)-2-hydroxy-1-naphthaldehyde] have been synthesized from reaction (2-hydroxy-1-naphthaldehyde) and (5-amino-1,3,4-thiadiazole-2-thiol) for HL1 and (4-amino-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one) for HL2. Then, its metal ions complexes are synthesized with the general formula; [CrHL1Cl3(H2O)], [VOHL1(SO4)] [ML1Cl(H2O)] where M = Mn(II), Co(II), Ni(II) and Cu(II), and general formula; [Cr(L2)2 ]Cl and [M(L2)2] where M = VO(II), Mn(II), Co(II), Ni(II) and Cu(II) are reported. The ligands and their metal complexes are characterized by phisco- chemical spectroscopic
... Show MoreIn parallel with the shell model using the harmonic oscillator's single-particle wave functions, the Hartree-Fock approximation was also used to calculate the neutron skin thickness, the mirror charge radii, and the differences in proton radii for 13O-13B and 13N-13C mirror nuclei. The calculations were done for both mirror nuclei in the psdpn model space. Depending on the type of potential used, the calculated values of skin thickness are affected. The symmetry energy and the symmetry energy's slope at nuclear saturation density were also determined, and the ratio of the density to the saturation density of nuclear matter and the symmetry energy has a nearly linear correlation. The mirror ener
... Show MorePreviously many properties of graphene oxide in the field of medicine, biological environment and in the field of energy have been studied. This diversity in properties is due to the possibility of modification on the composition of this Nano compound, where the Graphene oxide is capable of more modification via addition other functional groups on its surface or at the edges of the sheet. The reason for this modification possibility is that the Sp3 hybridization (tetrahedral structure) of the carbon atoms in graphene oxide, and it contains many oxygenic functional groups that are able to reac with other groups. In this research the effect of addition of some amine compounds on electrical properties of graphene oxide has been studied by the
... Show More