Preferred Language
Articles
/
1hYcsIsBVTCNdQwCVdZr
Technological Advances in Soil Penetration Resistance Measurement and Prediction Algorithms
...Show More Authors

Soil compaction is one of the most harmful elements affecting soil structure, limiting plant growth and agricultural productivity. It is crucial to assess the degree of soil penetration resistance to discover solutions to the harmful consequences of compaction. In order to obtain the appropriate value, using soil cone penetration requires time and labor-intensive measurements. Currently, satellite technologies, electronic measurement control systems, and computer software help to measure soil penetration resistance quickly and easily within the precision agriculture applications approach. The quantitative relationships between soil properties and the factors affecting their diversity contribute to digital soil mapping. Digital soil maps use machine learning algorithms to determine the above relationship. Algorithms include multiple linear regression (MLR), k-nearest neighbors (KNN), support vector regression (SVR), cubist, random forest (RF), and artificial neural networks (ANN). Machine learning made it possible to predict soil penetration resistance from huge sets of environmental data obtained from onboard sensors on satellites and other sources to produce digital soil maps based on classification and slope, but whose output must be verified if they are to be trusted. This review presents soil penetration resistance measurement systems, new technological developments in measurement systems, and the contribution of precision agriculture techniques and machine learning algorithms to soil penetration resistance measurement and prediction.

Scopus Crossref
View Publication
Publication Date
Wed Feb 01 2023
Journal Name
Journal Of Engineering
Vertical Stress Prediction for Zubair Oil Field/ Case Study
...Show More Authors

Predicting vertical stress was indeed useful for controlling geomechanical issues since it allowed for the computation of pore pressure for the formation and the classification of fault regimes. This study provides an in-depth observation of vertical stress prediction utilizing numerous approaches using the Techlog 2015 software. Gardner's method results in incorrect vertical stress values with a problem that this method doesn't start from the surface and instead relies only on sound log data. Whereas the Amoco, Wendt non-acoustic, Traugott, average technique simply needed density log as input and used a straight line as the observed density, this was incorrect for vertical computing stress. The results of these methods

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Sep 03 2019
Journal Name
Eastern-european Journal Of Enterprise Technologies
Prediction of spot welding parameters using fuzzy logic controlling
...Show More Authors

View Publication
Scopus (5)
Crossref (4)
Scopus Crossref
Publication Date
Sat Aug 01 2015
Journal Name
International Journal Of Computer Science And Mobile Computing
Image Compression based on Non-Linear Polynomial Prediction Model
...Show More Authors

Publication Date
Thu Sep 30 2010
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
PREDICTION OF FINITE CONCENTRATIONBEHAVIOR FROM INFINITE DILUTION EGUILIBRIUM DATA
...Show More Authors

Experimental activity coefficients at infinite dilution are particularly useful for calculating the parameters needed in an expression for the excess Gibbs energy. If reliable values of γ∞1 and γ∞2 are available, either from direct experiment or from a correlation, it is possible to predict the composition of the azeotrope and vapor-liquid equilibrium over the entire range of composition. These can be used to evaluate two adjustable constants in any desired expression for G E. In this study MOSCED model and SPACE model are two different methods were used to calculate γ∞1 and γ∞2

View Publication Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Proceedings Of International Conference On Computing And Communication Networks
Automatic Health Speech Prediction System Using Support Vector Machine
...Show More Authors

View Publication
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Tue Jul 09 2024
Journal Name
Diagnostics
A Novel Hybrid Machine Learning-Based System Using Deep Learning Techniques and Meta-Heuristic Algorithms for Various Medical Datatypes Classification
...Show More Authors

Medicine is one of the fields where the advancement of computer science is making significant progress. Some diseases require an immediate diagnosis in order to improve patient outcomes. The usage of computers in medicine improves precision and accelerates data processing and diagnosis. In order to categorize biological images, hybrid machine learning, a combination of various deep learning approaches, was utilized, and a meta-heuristic algorithm was provided in this research. In addition, two different medical datasets were introduced, one covering the magnetic resonance imaging (MRI) of brain tumors and the other dealing with chest X-rays (CXRs) of COVID-19. These datasets were introduced to the combination network that contained deep lea

... Show More
View Publication
Scopus (4)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Thu Oct 31 2019
Journal Name
Asian Journal Of Pharmaceutical And Clinical Research
DESIGN, SYNTHESIS, DOCKING, ANTITUMOR SCREENING, AND ABSORPTION, DISTRIBUTION, METABOLISM, AND EXCRETION PREDICTION OF NEW HESPERDIN DERIVATIVE
...Show More Authors

Objective: Hesperidin (HSP) is a pharmacologically active organic compound found in citrus fruits and peppermint. We synthesized a new HSP derivative by reacting it with 5-Amino-1,3,4-thiadiazole-2-thiol in acetic acid. Methods: This compound was characterized by Fourier-transform infrared, proton nuclear magnetic resonance, and electron impact mass spectra. A molecular docking study explores the predicted binding of the compound and its possible mode of action. Bioavailability, site of absorption, drug mimic, and topological polar surface was predicted using absorption, distribution, metabolism, and excretion (ADME) studies. Results: The docking study predicts that the new compound binds to the active sites of Aurora-B

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Dec 02 2012
Journal Name
Baghdad Science Journal
The Relation of IGF-1 and Insulin Resistance in a Sample of Iraqi Obese Type 2 Diabetic Patients with Macrovascular Disease
...Show More Authors

Type 2 diabetes mellitus(T2DM) is a metabolic disease that is associated with an increased risk for atherosclerosis by 2-4 folds than in non- diabetics. In general population, low IGF-1 has been associated with higher prevalence of cardiovascular disease and mortality .This study aims to find out the relationship between IGF-1 level and other biochemical markers such as Homeostasis Model Assessment insulin resistance(HOMAIR) and Body Mass Index(BMI) in type 2 diabetic patients . This study includes (82) patients (40 females and 42 males) with age range (40-75) years,(34) non obese diabetic patients and (48) obese diabetic patients. The non obese individuals considered

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Oct 09 2025
Journal Name
Journal Of Baghdad College Of Dentistry
Fracture resistance of weakened premolars restored with sonically-activated composite, bulk-filled and incrementally-filled composites(A comparative in vitro study)
...Show More Authors

Background: This study was conducted to assess the effect of sonic activation and bulk placement of resin composite in comparison to horizontal incremental placement on the fracture resistance of weakened premolar teeth. Materials and method: Sixty sound human single-rooted maxillary premolars extracted for orthodontic purposes were used in this study. Teeth were divided into six groups of ten teeth each: Group 1 (sound unprepared teeth as a control group), Group 2 (teeth prepared with MOD cavity and left unrestored), Group 3 (restored with SonicFill™ composite), Group 4 (restored with Quixfil™ composite), Group 5 (restored with Tertic EvoCeram® Bulk Fill composite) and Group 6 (restored with Universal Tetric EvoCeram® co

... Show More
View Publication Preview PDF
Publication Date
Mon Dec 01 2025
Journal Name
Case Studies In Construction Materials
Optimized stress-strain modeling of eco-friendly fiber-reinforced concrete members using meta-heuristic algorithms
...Show More Authors

Eco-friendly concrete is produced using the waste of many industries. It reduces the fears concerning energy utilization, raw materials, and mass-produced cost of common concrete. Several stress-strain models documented in the literature can be utilized to estimate the ultimate strength of concrete components reinforced with fibers. Unfortunately, there is a lack of data on how non-metallic fibers, such as polypropylene (PP), affect the properties of concrete, especially eco-friendly concrete. This study presents a novel approach to modeling the stress-strain behavior of eco-friendly polypropylene fiber-reinforced concrete (PFRC) using meta-heuristic particle swarm optimization (PSO) employing 26 PFRC various mixtures. The cement was partia

... Show More
View Publication Preview PDF
Scopus Clarivate Crossref