Soil compaction is one of the most harmful elements affecting soil structure, limiting plant growth and agricultural productivity. It is crucial to assess the degree of soil penetration resistance to discover solutions to the harmful consequences of compaction. In order to obtain the appropriate value, using soil cone penetration requires time and labor-intensive measurements. Currently, satellite technologies, electronic measurement control systems, and computer software help to measure soil penetration resistance quickly and easily within the precision agriculture applications approach. The quantitative relationships between soil properties and the factors affecting their diversity contribute to digital soil mapping. Digital soil maps use machine learning algorithms to determine the above relationship. Algorithms include multiple linear regression (MLR), k-nearest neighbors (KNN), support vector regression (SVR), cubist, random forest (RF), and artificial neural networks (ANN). Machine learning made it possible to predict soil penetration resistance from huge sets of environmental data obtained from onboard sensors on satellites and other sources to produce digital soil maps based on classification and slope, but whose output must be verified if they are to be trusted. This review presents soil penetration resistance measurement systems, new technological developments in measurement systems, and the contribution of precision agriculture techniques and machine learning algorithms to soil penetration resistance measurement and prediction.
A total of 200 samples (180 fecal materials and 20 organ samples) were collected from (5 different poultry farms, 10 local poultry shops, 5 houses poultry, 5 Eggs stores shops and 5hand slaughters centers) in Ibb city, Yemen, 2014. According to morphological, cultural, as well as biochemical characterization and serological tests, 59(29.5%) isolates were identified as Salmonella spp. and all Salmonella isolates were categorized by serotype, which comprised of, 37(62.71%) Salmonella Typhimurium serovar, 21(35.59%). Salmonella Enteritidis serovar and 1(1.69%) Salmonella Heidlberg serovar. Antibiotic sensitivity test was done for bacterial isolates and the results showed there were clear differences in antibiotic resistant. Antimicrobial
... Show MoreSome metal ions (Mn+2, Co+2, Ni+2, Cu+2, Zn+2, Cd+2 and Hg+2) complexes of quinaldic acid (QuinH) and α-picoline (α-Pic) have been synthesized and characterized on the basis of their , FTIR, (U.V-Vis) spectroscopy, conductivity measurements, magnetic susceptibility and atomic absorption. From the results obtained the following general formula has suggested for the prepared complexes [M(Quin)2( α-Pic)2].XH2O where M+2 = (Mn, Co, Ni, Cu, Zn, Cd and Hg), X = 2, X = zero for (Co+2 and Hg+2) complexes, (Quin-) = quinaldate ion, (α-Pic) = α-picoline. The results showed that the deprotonated ligand (QuinH) by using (KOH) coordinated to metal ions as bidentate ligand through the oxygen atom of the carboxylate group (-COO-) and the nitrogen ato
... Show MoreThis article aims to identify the views of media elites on citizen journalism, a new media genre that strays away from the foundations and ethics of professional journalism, thus calling for in-depth exploration and scrutiny into the genre and its commitment to the professional standards of journalism.
For this purpose, the researcher opted for the survey method by distributing a questionnaire to a purposive sample consisting of 407 media elites. The research is also based on Habermas' public sphere theory.
The rise of antibiotic-resistant bacteria necessitates the exploration of novel antimicrobial agents. Yttrium oxide nanoparticles (Y₂O₃) have shown potential due to their unique physicochemical properties and antibacterial activities against various pathogens. This study investigates the cytotoxic and antibacterial effects of Y₂O₃ nanoparticles against Serratia fonticuli and Citrobacter koseri, bacteria isolated from cholangitis patients. Bacterial strains were isolated from bile specimens and confirmed using standard microbiological techniques. The methods of X-ray diffraction (XRD), (SEM), and Frequency transform-infrared spectroscopic (FT-IR) were used to characterize YO₃ particles. Using a microdilution technique, the minimum
... Show MoreHealthcare professionals routinely use audio signals, generated by the human body, to help diagnose disease or assess its progression. With new technologies, it is now possible to collect human-generated sounds, such as coughing. Audio-based machine learning technologies can be adopted for automatic analysis of collected data. Valuable and rich information can be obtained from the cough signal and extracting effective characteristics from a finite duration time interval that changes as a function of time. This article presents a proposed approach to the detection and diagnosis of COVID-19 through the processing of cough collected from patients suffering from the most common symptoms of this pandemic. The proposed method is based on adopt
... Show More