Nasryia oil field is located about 38 Km to the north-west of Nasryia city. The field was discovered in 1975 after doing seismic by Iraqi national oil company. Mishrif formation is a carbonate rock (Limestone and Dolomite) and its thickness reach to 170m. The main reservoir is the lower Mishrif (MB) layer which has medium permeability (3.5-100) md and good porosity (10-25) %. Form well logging interpretation, it has been confirmed the rock type of Mishrif formation as carbonate rock. A ten meter shale layer is separating the MA from MB layer. Environmental corrections had been applied on well logs to use the corrected one in the analysis. The combination of Neutron-Density porosity has been chosen for interpretation as it is close to core porosity. Archie equation had been used to calculate water saturation using corrected porosity from shale effect and Archie parameters which are determined using Picket plot. Using core analysis with log data lead to establish equations to estimate permeability and porosity for non-cored wells. Water saturation form Archie was used to determine the oil-water contact which is very important in oil in place calculation. PVT software was used to choose the best fit PVT correlation that describes reservoir PVT properties which will be used in reservoir and well modeling. Numerical software was used to generate reservoir model using all geological and petrophysical properties. Using production data to do history matching and determine the aquifer affect as weak water drive. Reservoir model calculate 6.9 MMMSTB of oil as initial oil in place, this value is very close to that measured by Chevron study on same reservoir which was 7.1 MMMSTB. [1] Field production strategy had been applied to predict the reservoir behavior and production rate for 34 years. The development strategy used water injection to support reservoir pressure and to improve oil recovery. The result shows that the reservoir has the ability to produce oil at apparently stable rate equal to 85 Kbbl/d, also the recovery factor is about 14%.
The aim of this paper is to find out the effects of the strategy of productive thinking upon the student’s achievement for the subject of research methodology in the College of Islamic Sciences. Achieving this objective, the researchers set the null hypotheses: (1) No difference is noticed to be statistically significant at the level of significance (0.05) among the student’s mean scores in the experimental group who were taught by the strategy of productive thinking, and the student’s mean scores in the control group who studied by the traditional method in the achievement test. (2) At level of sig. (0.05), there is no statistically significant difference in the mean of scores of the pre-tests and post ones in the achievement test of
... Show MoreThe aim of this paper is to find out the effects of the strategy of productive thinking upon the student’s achievement for the subject of research methodology in the College of Islamic Sciences. Achieving this objective, the researchers set the null hypotheses: (1) No difference is noticed to be statistically significant at the level of significance (0.05) among the student’s mean scores in the experimental group who were taught by the strategy of productive thinking, and the student’s mean scores in the control group who studied by the traditional method in the achievement test. (2) At level of sig. (0.05), there is no statistically significant difference in the mean of scores of the pre-tests and post ones in the achievement test of
... Show MoreIn this study, sulfur was removed from imitation oil using oxidative desulfurization process. Silicoaluminophosphate (SAPO-11) was prepared using the hydrothermal method with a concentration of carbon nanotubes (CNT) of 0% and 7.5% at 190 °C crystallization temperature. The final molar composition of the as-prepared SAPO-11 was Al2O3: 0.93P2O5: 0.414SiO2. 4% MO/SAPO-11 was prepared using impregnation methods. The produced SAPO-11 was described using X-ray diffraction (XRD) and Brunauer-Emmet-Teller (N2 adsorption–desorption isotherms). It was found that the addition of CNT increased the crystallinity of SAPO-11. The results showed that the surface area of SAPO-11 cont
... Show MoreThe catalytic cracking of three feeds of extract lubricating oil, that produced as a by-product from the process of furfural extraction of lubricating oil base stock in AL-Dura refinery at different operating condition, were carried out at a fixed bed laboratory reactor. The initial boiling point for these feeds was 140 ºC for sample (1), 86 ºC for sample (2) and 80 ºC for sample (3). The catalytic cracking processes were carried out at temperature range 325-400 ºC and initially at atmospheric pressure after 30 minutes over 9.88 % HY-zeolite catalyst load. The comparison between the conversion at different operating conditions of catalytic cracking processes indicates that a high yield was obtained at 375°C, according to gasoline pr
... Show MoreIn this study, sulfur was removed from imitation oil using oxidative desulfurization process. Silicoaluminophosphate (SAPO-11) was prepared using the hydrothermal method with a concentration of carbon nanotubes (CNT) of 0% and 7.5% at 190 °C crystallization temperature. The final molar composition of the as-prepared SAPO-11 was Al2O3: 0.93P2O5: 0.414SiO2. 4% MO/SAPO-11 was prepared using impregnation methods. The produced SAPO-11 was described using X-ray diffraction (XRD) and Brunauer-Emmet-Teller (N2 adsorption–desorption isotherms). It was found that the addition of CNT increased the crystallinity of SAPO-11. The results showed that the surface area of SAPO-11 containing 7.5% CNT was 179.54 m2/g, and the pore volume was 0.31
... Show MoreThis work studies with produce of light fuel fractions of gasoline, kerosene and gas oil from treatment of residual matter that will be obtained from the solvent extraction process as by product from refined lubricate to improve oil viscosity index in any petroleum refinery. The percentage of this byproduct is approximately 10% according to all feed (crude oil) in the petroleum refinery process. The objective of this research is to study the effect of the residence time parameter on the thermal cracking process of the byproduct feed at a constant temperature, (400 °C). The first step of this treatment is the thermal cracking of this byproduct material by a constructed batch reactor occupied with control device at a selective range of re
... Show MoreThis work deals with thermal cracking of heavy vacuum gas oil which produced from the top of vacuum distillation unit at Al- DURA refinery, by continuous process. An experimental laboratory plant scale was constructed in laboratories of chemical engineering department, Al-Nahrain University and Baghdad University. The thermal cracking process was carried out at temperature ranges between 460-560oC and atmospheric pressure with liquid hourly space velocity (LHSV) equal to 15hr-1.The liquid product from thermal cracking unit was distilled by atmospheric distillation device according to ASTM D-86 in order to achieve two fractions, below 220oC as a gasoline fraction and above 220oC as light cycle o
... Show MoreThis work deals with thermal cracking of three samples of extract lubricating oil produced as a by-product from furfural extraction process of lubricating oil base stock in AL-Dura refinery. The thermal cracking processes were carried out at a temperature range of 325-400 ºC and atmospheric pressure by batch laboratory reactor. The distillation of cracking liquid products was achieved by general ASTM distillation (ASTM D -86) for separation of gasoline fraction up to 220 ºC from light cycle oil fraction above 220 ºC. The comparison between the conversions at different operating conditions of thermal cracking processes indicates that a high conversion was obtained at 375°C, according to gasoline production. According to gasoline produ
... Show MoreIn the present work, a closed loop circulation system consist of three testing sections was designed and constructed. The testing sections made from (3m) of commercial carbon steel pipe of diameters(5.08, 2.54 and 1.91 cm) . Anionic surfactant (SDBS )with concentrations of (50, 100, 150, 200 and 250 ppm) was tested as a drag reducing agent. The additive(SDBS)studied using crude oil from south of Iraq. The flow rates of crude oil were used in 5.08 and 2.54 cm I.D. pipes are (1 - 12) m3/hr while (1-6) m3/hr were used in 1.91 cm J .D. pipe . Percentage drag reduction (%Dr) was found to increase by increasing solution velocity, pipe diameter and additives concentration (i.e. increasi
... Show More