Preferred Language
Articles
/
1YYBtoYBIXToZYALMLKP
Improving the melting performance in a triple-pipe latent heat storage system using hemispherical and quarter-spherical fins with a staggered arrangement
...Show More Authors

This study aims to evaluate the melting characteristics of a phase change material (PCM) in a latent heat storage system equipped with hemispherical and quarter-spherical fins. A vertical triple-pipe heat exchanger is used as the PCM-based heat storage unit to improve the melting performance compared with a double-pipe system. Furthermore, the fins are arranged in inline and staggered configurations to improve heat transfer performance. For the quarter-spherical fins, both upward and downward directions are examined. The results of the system equipped with novel fins are compared with those without fins. Moreover, a fin is added to the heat exchanger’s base to compensate for the natural convection effect at the bottom of the heat exchanger. Considering similar fin volumes, the results show that the system equipped with four hemispherical fins on the side walls and an added fin on the bottom wall has the best performance compared with the other cases with hemispherical fins. The staggered arrangement of the fins results in a higher heat transfer rate. The downward quarter-spherical fins with a staggered configuration show the highest performance among all the studied cases. Compared with the case without fins, the heat storage rate improves by almost 78% (from 35.6 to 63.5 W), reducing the melting time by 45%.

Scopus Clarivate Crossref
View Publication
Publication Date
Mon Nov 01 2021
Journal Name
Journal Of Engineering
Numerical Study for the Tube Rotation Effect on Melting Process in Shell and Tube Latent Heat Energy Storage LHES System
...Show More Authors

Although renewable energy systems have become an interesting global issue, it is not continuous either daily or seasonally. Latent heat energy storage (LHES) is one of the suitable solutions for this problem. LHES becomes a basic element in renewable energy systems. LHES compensate for the energy lack when these systems are at low production conditions. The present work considered a shell and tube LHES for numerical investigation of the tube rotation influence on the melting process. The simulation and calculations were carried out using ANSYS Fluent software. Paraffin wax represents the phase change material (PCM) in this work, while water was selected to be the heat transfer fluid (HTF). The calculations were carried o

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sat Oct 08 2022
Journal Name
Journal Of Computational Design And Engineering
Twisted-fin parametric study to enhance the solidification performance of phase-change material in a shell-and-tube latent heat thermal energy storage system
...Show More Authors
Abstract<p>Phase change material (PCM) is considered as one of the most effective thermal energy storage (TES) systems to balance energy supply and demand. A key challenge in designing efficient PCM-based TES systems lies in the enhancement of heat transmission during phase transition. This study numerically examines the privilege of employing twisted-fin arrays inside a shell-and-tube latent heat storage unit to improve the solidification performance. The presence of twisted fins contributes to the dominating role of heat conduction by their curved shapes, which restricts the role of natural convection but largely aids the overall heat-transfer process during solidification. The heat-discharge </p> ... Show More
View Publication
Scopus (13)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Thu Jun 02 2016
Journal Name
Ashrae Transactions
Melting of PCM with nanoparticles in a triplex-tube thermal energy storage system
...Show More Authors

Scopus (28)
Scopus
Publication Date
Mon Jul 01 2019
Journal Name
International Journal Of Heat And Mass Transfer
Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: A review
...Show More Authors

View Publication
Scopus (275)
Crossref (281)
Scopus Clarivate Crossref
Publication Date
Sat Sep 01 2018
Journal Name
International Journal Of Heat And Mass Transfer
Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger
...Show More Authors

View Publication
Scopus (253)
Crossref (250)
Scopus Clarivate Crossref
Publication Date
Tue Dec 13 2022
Journal Name
Frontiers In Chemistry
Numerical analysis of the energy-storage performance of a PCM-based triplex-tube containment system equipped with arc-shaped fins
...Show More Authors

This study numerically intends to evaluate the effects of arc-shaped fins on the melting capability of a triplex-tube confinement system filled with phase-change materials (PCMs). In contrast to situations with no fins, where PCM exhibits relatively poor heat response, in this study, the thermal performance is modified using novel arc-shaped fins with various circular angles and orientations compared with traditional rectangular fins. Several inline and staggered layouts are also assessed to maximize the fin’s efficacy. The effect of the nearby natural convection is further investigated by adding a fin to the bottom of the heat-storage domain. Additionally, the Reynolds number and temperature of the heat-transfer fluid (HTF) are e

... Show More
Scopus (38)
Crossref (32)
Scopus Clarivate Crossref
Publication Date
Thu Feb 01 2018
Journal Name
Applied Energy
Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins
...Show More Authors

View Publication
Scopus (283)
Crossref (266)
Scopus Clarivate Crossref
Publication Date
Wed Nov 01 2023
Journal Name
Case Studies In Thermal Engineering
Augmenting the thermal response of helical coil latent-heat storage systems with a central return tube configuration
...Show More Authors

Low-temperature stratification, high-volumetric storage capacity, and less-complicated material processing make phase-changing materials (PCMs) very suitable candidates for solar energy storage applications. However, their poor heat diffusivities and suboptimal containment designs severely limit their decent storage capabilities. In these systems, the arrangement of tubes conveying the heat transport fluid (HTF) plays a crucial role in heat communication between the PCM and HTF during phase transition. This study investigates a helical coil tube-and-shell thermal storage system integrated with a novel central return tube to enhance heat transfer effectiveness. Three-dimensional computational fluid dynamics simulations compare the proposed d

... Show More
View Publication
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Fri May 31 2019
Journal Name
Journal Of Engineering
Numerical Investigation of Heat Transfer Enhancement of Double Pipe Heat Exchanger Using Metal Foam Fins
...Show More Authors

The influence of adding metal foam fins on the heat transfer characteristics of an air to water double pipe heat exchanger is numerically investigated. The hot fluid is water which flows in the inner cylinder whereas the cold fluid is air which circulates in the annular gap in parallel flow with water. Ten fins of metal foam (Porosity = 0.93), are added in the gap between the two cylinder, and distributed periodically with the axial distance. Finite volume method is used to solve the governing equations in porous and non-porous regions. The numerical investigations cover three values for Reynolds number (1000 ,1500, 2000), and Darcy number (1 x10-1, 1 x10-2, 1x10-3). The comparison betwee

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Fri Mar 05 2021
Journal Name
Materials
Optimum Placement of Heating Tubes in a Multi-Tube Latent Heat Thermal Energy Storage
...Show More Authors

Utilizing phase change materials in thermal energy storage systems is commonly considered as an alternative solution for the effective use of energy. This study presents numerical simulations of the charging process for a multitube latent heat thermal energy storage system. A thermal energy storage model, consisting of five tubes of heat transfer fluids, was investigated using Rubitherm phase change material (RT35) as the. The locations of the tubes were optimized by applying the Taguchi method. The thermal behavior of the unit was evaluated by considering the liquid fraction graphs, streamlines, and isotherm contours. The numerical model was first verified compared with existed experimental data from the literature. The outcomes re

... Show More
View Publication Preview PDF
Scopus (14)
Crossref (14)
Scopus Clarivate Crossref