The Covid-19 virus disease has been shown to affect numerous organs and systems including the liver. The study aimed to compare lipid profiles and liver enzyme levels in individuals who had recovered from Covid-19 infection. To achieve the study objectives, liver Aspartate Aminotransferase (AST), Alanine Aminotransferase (ALT), Alkaline phosphatase (ALP), Random Blood Sugar (RBS) and Lipid profile which include cholesterol, High-Density Lipoprotein (HDL), Triglycerides (T.G), Low-Density Lipoprotein (LDL), and Very low-density Lipoprotein (VLDL) were determined.
One hundred twenty serum samples were obtained, of which fifty samples were utilized as the control healthy persons (not affected by COVID) and seventy samples came f
... Show MoreBackground: In December 2019, an episode of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARSCoV2) was reported in Wuhan, China and has spread around the world, increasing the number of contagions. Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) are common herpesviruses that can cause persistent latent infections and affect the developing immune system.The study was conducted to explore the prevalence and reactivation of CMV and EBV antibodies in COVID-19 patients group in comparison to healthy group and to investigate the association between the presence of these viruses with each of severity of disease and oral hygiene. Materials and Methods: Eighty Five subjects were participated in this case control study (5
... Show MoreThis study aims to analyze the spatial distribution of the epidemic spread and the role of the physical, social, and economic characteristics in this spreading. A geographically weighted regression (GWR) model was built within a GIS environment using infection data monitored by the Iraqi Ministry of Health records for 10 months from March to December 2020. The factors adopted in this model are the size of urban interaction areas and human gatherings, movement level and accessibility, and the volume of public services and facilities that attract people. The results show that it would be possible to deal with each administrative unit in proportion to its circumstances in light of the factors that appe
SUMMARY. The objectives of the present study were to assess the possible predictors of COVID-19 severity and duration of hospitalization and to identify the possible correlation between patient parameters, disease severity and duration of hospitalization. The study included retrospective medical record extraction of previous coron avirus COVID-19 patients in Basra hospitals, Iraq from March 1st and May 31st, 2020. The information of the participants was investigated anonymously. All the patients’ characteristics, treatments, vital signs and laboratory tests (hematological, renal and liver function tests) were collected. The analysis was conducted using the SPSS (version 22, USA). Spearman correlation was used to measure the relations
... Show MoreThis paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).
Background: Bone mineral density has been assessed using Dual-Energy X-Ray Absorptiometry. Bone mineral density is measured according to the results of the Dual-Energy X-Ray Absorptiometry examination of the vertebral column and pelvis. Although diabetes mellitus type II (DM) is known to affect bone mineral density, at the present time this particular relationship is not clear. Objective: The aim of current study was to evaluate the effects of type II diabetes mellitus on bone mineral density of the upper and lower limbs as well as gender differences. Patients and Methods: This study involved 165 patients complaining of bone pain (85 males and 80 females), 85 patients of who suffered from diabetes, involving both genders. In addition,
... Show MoreAnalyzing sentiment and emotions in Arabic texts on social networking sites has gained wide interest from researchers. It has been an active research topic in recent years due to its importance in analyzing reviewers' opinions. The Iraqi dialect is one of the Arabic dialects used in social networking sites, characterized by its complexity and, therefore, the difficulty of analyzing sentiment. This work presents a hybrid deep learning model consisting of a Convolution Neural Network (CNN) and the Gated Recurrent Units (GRU) to analyze sentiment and emotions in Iraqi texts. Three Iraqi datasets (Iraqi Arab Emotions Data Set (IAEDS), Annotated Corpus of Mesopotamian-Iraqi Dialect (ACMID), and Iraqi Arabic Dataset (IAD)) col
... Show MoreGender classification is a critical task in computer vision. This task holds substantial importance in various domains, including surveillance, marketing, and human-computer interaction. In this work, the face gender classification model proposed consists of three main phases: the first phase involves applying the Viola-Jones algorithm to detect facial images, which includes four steps: 1) Haar-like features, 2) Integral Image, 3) Adaboost Learning, and 4) Cascade Classifier. In the second phase, four pre-processing operations are employed, namely cropping, resizing, converting the image from(RGB) Color Space to (LAB) color space, and enhancing the images using (HE, CLAHE). The final phase involves utilizing Transfer lea
... Show More