Preferred Language
Articles
/
1WFWHpkBdMdGkNqjuRMp
Automatic COVID-19 Detection from Chest X-ray using Deep MobileNet Convolutional Neural Network
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Thu Dec 30 2021
Journal Name
Al-kindy College Medical Journal
COVID-19 and the Conspiracy Theories
...Show More Authors

The first known use of the term conspiracy theory dated back to the nineteenth century. It is defined as a theory that explains an event or set of circumstances as the result of a secret plot by usually powerful conspirators. It is commonly used, but by no means limited to, extreme political groups. Since the emergence of COVID-19 as a global pandemic in December 2019, the conspiracy theory was present at all stages of the pandemic.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Oct 27 2022
Journal Name
2022 International Conference On Engineering And Emerging Technologies (iceet)
Telemedicine Framework in COVID-19 Pandemic
...Show More Authors

View Publication
Scopus (14)
Crossref (9)
Scopus Crossref
Publication Date
Thu Dec 30 2021
Journal Name
Al-kindy College Medical Journal
COVID-19 and the Conspiracy Theories
...Show More Authors

The first known use of the term conspiracy theory dated back to the nineteenth century. It is defined as a theory that explains an event or set of circumstances as the result of a secret plot by usually powerful conspirators. It is commonly used, but by no means limited to, extreme political groups. Since the emergence of COVID-19 as a global pandemic in December 2019, the conspiracy theory was present at all stages of the pandemic.

Preview PDF
Crossref (1)
Crossref
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Mechanical Science And Technology
Damage detection in glass/epoxy composite structure using 8–12 GHz X-band
...Show More Authors

View Publication
Scopus (7)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Mon Apr 01 2024
Journal Name
Telkomnika (telecommunication Computing Electronics And Control)
Classification of grapevine leaves images using VGG-16 and VGG-19 deep learning nets
...Show More Authors

The successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi

... Show More
View Publication
Crossref (10)
Crossref
Publication Date
Sun Dec 30 2007
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of Fractional Hold-Up in RDC Column Using Artificial Neural Network
...Show More Authors

In the literature, several correlations have been proposed for hold-up prediction in rotating disk contactor. However,
these correlations fail to predict hold-up over wide range of conditions. Based on a databank of around 611
measurements collected from the open literature, a correlation for hold up was derived using Artificial Neiral Network
(ANN) modeling. The dispersed phase hold up was found to be a function of six parameters: N, vc , vd , Dr , c d m / m ,
s . Statistical analysis showed that the proposed correlation has an Average Absolute Relative Error (AARE) of 6.52%
and Standard Deviation (SD) 9.21%. A comparison with selected correlations in the literature showed that the
developed ANN correlation noticeably

... Show More
View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
Journal Of Petroleum Research And Studies
Modeling of Oil Viscosity for Southern Iraqi Reservoirs using Neural Network Method
...Show More Authors

The calculation of the oil density is more complex due to a wide range of pressuresand temperatures, which are always determined by specific conditions, pressure andtemperature. Therefore, the calculations that depend on oil components are moreaccurate and easier in finding such kind of requirements. The analyses of twenty liveoil samples are utilized. The three parameters Peng Robinson equation of state istuned to get match between measured and calculated oil viscosity. The Lohrenz-Bray-Clark (LBC) viscosity calculation technique is adopted to calculate the viscosity of oilfrom the given composition, pressure and temperature for 20 samples. The tunedequation of state is used to generate oil viscosity values for a range of temperatu

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Sun Sep 30 2012
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Development of PVT Correlation for Iraqi Crude Oils Using Artificial Neural Network
...Show More Authors

Several correlations have been proposed for bubble point pressure, however, the correlations could not predict bubble point pressure accurately over the wide range of operating conditions. This study presents Artificial Neural Network (ANN) model for predicting the bubble point pressure especially for oil fields in Iraq. The most affecting parameters were used as the input layer to the network. Those were reservoir temperature, oil gravity, solution gas-oil ratio and gas relative density. The model was developed using 104 real data points collected from Iraqi reservoirs. The data was divided into two groups: the first was used to train the ANN model, and the second was used to test the model to evaluate their accuracy and trend stability

... Show More
View Publication Preview PDF
Publication Date
Wed Dec 30 2009
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Prediction of the Point Efficiency of Sieve Tray Using Artificial Neural Network
...Show More Authors

An application of neural network technique was introduced in modeling the point efficiency of sieve tray, based on a
data bank of around 33l data points collected from the open literature.Two models proposed,using back-propagation
algorithm, the first model network consists: volumetric liquid flow rate (QL), F foctor for gas (FS), liquid density (pL),
gas density (pg), liquid viscosity (pL), gas viscosity (pg), hole diameter (dH), weir height (hw), pressure (P) and surface
tension between liquid phase and gas phase (o). In the second network, there are six parameters as dimensionless
group: Flowfactor (F), Reynolds number for liquid (ReL), Reynolds number for gas through hole (Reg), ratio of weir
height to hole diqmeter

... Show More
View Publication Preview PDF
Publication Date
Thu May 05 2016
Journal Name
Global Journal Of Engineering Science And Researches
EVALUATE THE RATE OF CONTAMINATION SOILS BY COPPER USING NEURAL NETWORK TECHNIQUE
...Show More Authors

The aim of this paper is to design suitable neural network (ANN) as an alternative accurate tool to evaluate concentration of Copper in contaminated soils. First, sixteen (4x4) soil samples were harvested from a phytoremediated contaminated site located in Baghdad city in Iraq. Second, a series of measurements were performed on the soil samples. Third, design an ANN and its performance was evaluated using a test data set and then applied to estimate the concentration of Copper. The performance of the ANN technique was compared with the traditional laboratory inspecting using the training and test data sets. The results of this study show that the ANN technique trained on experimental measurements can be successfully applied to the rapid est

... Show More
View Publication Preview PDF