Mixed ligands reaction of [2-[(3-hydroxyphenyl)diazinyl]-1,2-benzothiazol-3(2H)-one-1,1-dioxide] (H2L, primary ligand) and bipyridyl (secondary ligand) with salts of Cr(III), Mn(II), Fe(III), Co(II) and Ni(II) was performed. A series of air-stable complexes with distinctive octahedral moieties was created by equal molar ratio (1:1:1). The formation of these compounds was verified using detecting analysis techniques incorporating mass spectra, which validated the achieved geometries. Fourier transform infrared (FTIR) analysis demonstrated how the ligands (H2L and bipyridyl) are chelated as tridentate (ONO) and bidentate (NN) groups, respectively and the coordination with the metal ions. Thermal decomposition studies using pyrolysis (TGA and DSC) verified that water residues could be coordinated with metal complexes. Additionally, elemental micro-analysis, chlorine amount test, molar conductivity and melting points examination were carried out. Magnetic sensitivity of the susceptibility and ultraviolet-visible (UV-vis) spectrophotometry can also reveal the coordination existence with the metals and complexes formation. The compounds' antioxidant records were finally evaluated using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical as a free radical method. It was compared to that of gallic acid as an accordingly standard antioxidant substance with its IC50 value. These complexes could restrict free radicals; [Fe(L)(bipy)Cl] has the best antioxidant activity, whereas [Ni(L)(bipy)H2O] has the lowest.
The compound [L] was produced in the current study through the reaction of 4-aminoacetophenon with 4-methoxyaniline in the cold, concentrated HCl with 10% NaNO2. Curcumin, several transition metal complexes (Ni (II), La (III), and Hg (II)), and compound [L] were combined in EtOH to create new complexes. UV-vis spectroscopy, FTIR, AA, TGA-DSC, conductivity, chloride content, and elemental analysis (CHNS) were used to describe the structure of produced complexes. Biological activities against fungi, S. aureus (G+), Pseudomonas (G-), E. coli (G-), and Proteus (G-) were demonstrated using complexes. Depending on the outcomes of the aforementioned methods, octahedral formulas were given as the geometrical structures for each created comp
... Show MoreCoupling reaction of ( 4-amino antipyrene) with the (L- tyrosine ) gave the new azo ligand 2- ( 4- Antipyrene azo ) - tyrosine .Treatment of this ligand with metal ions (Mn(II) ,Co(II), Ni(II), and Cu(II) )in ethanolic medium in (1:2) (M:L) ratio yield a series of a neutral complexes of the general formula [M(L)2] . The prepared complexes were characterized using flame atomic absorption , FT.IR , UV-Vis spectroscopic and elemental microanalysis (C.H.N) as well as magnetic susceptibility and conductivity measurement
حضرت معقدات كل من الفنادايل, الخارصين, النحاس والكادميوم بتكافؤهم الثنائي والذهب بتكافؤه الثلاثي بأستخدام صبغة ازوجديدة (6،4،2-ثلاثي هيدروكسي-3-((3-هيدروكسي فنيل) ثنائي زينيل ) فنيل ) ايثان-1-اون المحضرة من ملح الديازونيوم مع ٦,٤,٢- ثلاثي هيدروكسي اسيتوفينون بعد عزل (E)-1-(2,4,6-trihydroxy-3-((3-hydroxyphenyl)diazenyl)phenyl)ethan-1-one تم تشخيصها بواسطة الطرق الطيفية المتاحة والتقنيات التشخيصية لكل من التحليل الدقيق للعناصرواطياف كل من ال
... Show MoreIn this paper, some series of new complexes of Mn(II), Co(II), Ni (II) Cu(II) and Hg(II) are prepared from the Schiff bases (L1,L2). (L1) derived from 4-aminoantipyrine and O-phenylene dia mine then (L2) derived from (L1) and 2-benzoyl benzoic acid. Structural features are obtained from their elemental microanalyses, molar conductance, IR, UV–Vis, 1H, 13CNMR spectra and magnetic susceptibility. The magnetic susceptibility and UV–Vis, IR spectral data of the ligand (L1) complexes get square–planar and tetrahedral geometries and the complexes oflig and (L2) get an octahedral geometry. Antimicrobial examinations show good results in the sharing complexes.
In this paper, some series of new complexes of Mn(II), Co(II), Ni (II) Cu(II) and Hg(II) are prepared from the Schiff bases (L1,L2). (L1) derived from 4-aminoantipyrine and O-phenylene dia mine then (L2) derived from (L1) and 2-benzoyl benzoic acid. Structural features are obtained from their elemental microanalyses, molar conductance, IR, UV–Vis, 1H, 13CNMR spectra and magnetic susceptibility. The magnetic susceptibility and UV–Vis, IR spectral data of the ligand (L1) complexes get square–planar and tetrahedral geometries and the complexes oflig and (L2) get an octahedral geometry. Antimicrobial examinations show good results in the sharing complexes.
. New Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((ІІ), Co(ІІ), Ni(ІІ), Cu(ІІ), Zn(ІІ) and Cd(ІІ) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic m
... Show MoreNew Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin- 2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((ІІ), Co(ІІ), Ni(ІІ), Cu(ІІ), Zn(ІІ) and Cd(ІІ) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic moment me
... Show MoreHippuric acid and 3-amino phenol were used to make the 4-(2-Amino-4-hydroxy-phenylazo)-benzoylamino-acetic acid diazonium salt, a new Azo molecule that is a derivative of the (4-Amino-benzoylamino)-acetic acid diazonium salt. We found out what the ligand's chemical structures were by using information from 1HNMR, FTIR, CHN, UV-Vis, LC-mass spectroscopy, and thermal analyses. To make metal complexes of the azo ligand with Co(II), Cu(II), Ru(III), and Rh(III) ions, extra amounts of each azo ligand were mixed with metal chloride salts in a 2:2 mole ratio. The stereochemical structures and geometries of the metal complexes that were studied were guessed based on the fact that the ligand exhibited tetradentate bonding behavior when combined w
... Show MoreThe research includes the synthesis and identification of the mixed ligands complexes of M 2 Ions in general composition ,[M(Leu) 2 (SMX)] Where L leucine (C 6 H 13 NO 2 )symbolized (LeuH) as a primary ligand and Sulfamethoxazole C 10 H 11 N 3 O 3 S) symbolized (SMX)) as a secondary ligand . The ligands and the metal chlorides were brought in to reaction at room temperature in(v/v) ethanol /water as solvent containing NaOH. The reaction required the following [(metal: 2(Na Leu --): (SMX )] molar ratios with M(II) ions, Were M ( Mn ( II),Co (II),Ni(II),Cu( II),Zn (II),Cd(II)and Hg( The UV Vis and magnetic moment data revealed an octahedral geometry around M(II), The conductivity data show a non electrolytic nature of the complexes . The
... Show More