This study was carried out at University of Baghdad - College of Agricultural Engineering Sciences - Research Station B during the autumn season 2019-2020, in order to evaluate the effect of Ozone and the foliar application of coconut water and moringa extract on the growth of broccoli plant grown in modified NFT film technology. A factorial experiment (2*5) was carried out within Nested Design with three replicates. The ozone treatment was distributed into the main plots which consisted of oxygen (O2) and ozone (O3). The foliar application of organic nutrients were distributed randomly within each replicate including five treatments, which were the control treatment (T0), Coconut water with two concentrations of 50 (T1) and 100 ml. L-1 (T2), and Moringa leaves extract at two concentrations 2% (T3) and 4% T4. Results revealed a significant effect of interaction between the ozone and the foliar application of coconut water 100 ml. L-1 (O3T2) on the leaves content of Ca, Mg, Fe, Zn, Cu, B, Chlorophyll, plant height, leaves number, leaves area, root length, roots dry weight, number and weight of secondary heads (24.09 ,33.16, 55.00, 56.01, 102.85, 72.01, 13.88, 9.39, 90.56, 96.56, 28.07, 24.52, 120.0, 77.48% respectively) compared to the control treatment (O2T0). Interaction between ozone enrichment and the foliar application of 4% Moringa leaves extract (O3T4) were recorded a significant increment in the main tablet weight, reached 687.33 gm.Plant-1 compared to the control treatment (O2T0). Interaction between ozone and Moringa leaves extract at 2% (O3T3) or, and coconut water 100 ml. L-1 (O3T2) had a significant increment in the total yield reached 51.07 and 50.94 tons.ha-1, respectively, compared to the control treatment (O2T0).
One of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model a
... Show MoreOne of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model at elevated t
... Show MoreOne of the most important parameters determining structural members' durability and strength is the fire flame's influence and hazard. Some engineers have advocated using advanced analytical models to predict fire spread impact within a compartment and considering finite element models of structural components to estimate the temperatures within a component using heat transfer analysis. This paper presented a numerical simulation for a reinforced concrete beam’s structural response in a case containing Water Absorbing Polymer Spheres (WAPS) subjected to fire flame effect. The commercial finite element package ABAQUS was considered. The relevant geometrical and material parameters of the reinforced concrete beam model at elevated t
... Show MoreIschemic heart disease is a major causes of heart failure. Heart failure patients have predominantly left ventricular dysfunction (systolic or diastolic dysfunction, or both). Acute heart failure is most commonly caused by reduced myocardial contractility, and increased LV stiffness. We performed echocardiography and gated SPECT with Tc99m MIBI within 263 patients and 166 normal individuals. Left ventricular end systolic volume (LVESV), left ventricular end diastolic volume (LVEDV), and left ventricular ejection fraction (LVEF) were measured. For all degrees of ischemia, there was a significant difference between ejection fraction values measured by SPECT and echo
Background: This in vitro study evaluated the effect of canal dryness and flaring on the accuracy of two electronic apex locators for working length (WL) determination. Materials and methods: Sixty extracted teeth were used, after access opening was done, the occlusal surface was flattened to create stable reference point. The teeth were randomly divided into two equal main groups of flared and unflared group each one of 30 teeth. The flaring was done with Gates Glidden drills. The two main groups were further subdivided into two subgroups: dry canal and wet canal using 5.25% sodium hypochlorite groups, Electronic WL of each sample was determined using both Root ZX and i-Root apex locator. Consequently, histologic WL was determined by shav
... Show MoreOne of the most important challenges facing the development of laser weapons is represented by the attenuation of the laser beam as it passed through the layers of atmosphere.This paper presents a theoretical study to simulate the effect of turbulence attenuation and calculates the decrease of laser power in Iraq. The refractive index structure C_n^2 is very important parameter to measure the strength of the atmospheric turbulence, which is affected by microclimate conditions, propagation path, season and time in the day. The results of measurements and predictions are based on the Kolmogorov turbulence theory. It was demonstrated by simulations that the laser weapons in Iraq were severely affected due to the large change in temperatures,
... Show MoreThe investigation of the effect of tempering on thermal analysis of
Al-Ti-Si alloy and its composites with MgO and SiC particles was
performed. Thermal analysis was performed before and after
tempering by DSC scan. Optical microscopy was used to identify the
phases and precipitations that may be formed in base alloy and
composites. X-ray diffraction test indicated that the Al3Ti is the main
phase in Al-Ti-Si alloy in addition to form Al5Ti7Si12 phase. Some
chemical reactions can be occurred between reinforcements and
matrix such as MgO.Al2O3 in Al-Ti/MgO, and Al4C3 and Al(OH)3 in
Al-Ti/SiC composite. X-ray florescence technique is used to
investigate the chemical composition of the fabricated specimens.
H
The influence of different thickness (500,750, and 1000) nm on the structure properties electrical conductivity and hall effect measurements have been investigated on the films of copper indium selenide CuInSe2 (CIS) the films were prepared by thermal evaporation technique on glass substrates at RT from compound alloy. The XRD pattern show that the film have poly crystalline structure a, the grain size increasing with as a function the thickness. Electrical conductivity (σ), the activation energies (Ea1,Ea2), hall mobility and the carrier concentration are investigated as function of thickness. All films contain two types of transport mechanisms of free carriers increase films thickness. The electrical conductivity increase with thickness
... Show MoreThin films samples of Bismuth sulfide Bi2S3 had deposited on
glass substrate using thermal evaporation method by chemical
method under vacuum of 10-5 Toor. XRD and AFM were used to
check the structure and morphology of the Bi2S3 thin films. The
results showed that the films with law thickness <700 nm were free
from any diffraction peaks refer to amorphous structure while films
with thickness≥700 nm was polycrystalline. The roughness decreases
while average grain size increases with the increase of thickness. The
A.C conductivity as function of frequency had studied in the
frequency range (50 to 5x106 Hz). The dielectric constant,
polarizability showed significant dependence upon the variation of
thic