Credit risk assessment has become an important topic in financial risk administration. Fuzzy clustering analysis has been applied in credit scoring. Gustafson-Kessel (GK) algorithm has been utilised to cluster creditworthy customers as against non-creditworthy ones. A good clustering analysis implemented by good Initial Centres of clusters should be selected. To overcome this problem of Gustafson-Kessel (GK) algorithm, we proposed a modified version of Kohonen Network (KN) algorithm to select the initial centres. Utilising similar degree between points to get similarity density, and then by means of maximum density points selecting; the modified Kohonen Network method generate clustering initial centres to get more reasonable clustering results. The comparative was conducted using three credit scoring datasets: Australian, German and Taiwan. Internal and external indexes of validity clustering are computed and the proposed method was found to have the best performance in these three data sets.
The permeability estimates for the uncored wells and a porosity function adopting a modified flow zone index-permeability crossplot are given in this work. The issues with implementing that approach were mostly crossplots, due to the influence of geological heterogeneity, did not show a clear connection (scatter data). Carbonate reservoir flow units may now be identified and characterized using a new approach, which has been formally confirmed. Due to the comparable distribution and flow of clastic and carbonate rock fluids, this zoning method is most effective for reservoirs with significant primary and secondary porosity. The equations and correlations here are more generalizable since they connect these variables by combining cor
... Show MoreModified optical fiber sensors received increasing attention because of their superior properties over electrical sensors. These properties include their immunity towards electromagnetic interference and the ability to be deployed in corrosive and volatile environment. Several optical fiber platforms have been developed for chemical sensing applications based on modifying optical fiber cladding layer such as etched, tapered, D-shaped and etched-tapered. The modifications purpose is to extend the evanescent wave propagating out of the core physical dimensions. Thus, evanescent wave interaction with analyte is enhanced. Modified optical transducing platforms are integrated in gas sensing applications, such as ammonia. Modified optical
... Show MoreThe utilization of sugarcane molasses (SCM), a byproduct of sugar refining, offers a promising bio-based alternative to conventional chemical admixtures in cementitious systems. This study investigates the effects of SCM at five dosage levels, 0.25%, 0.50%, 0.75%, 1.00%, and 1.25% by weight of cement, on cement mortar performance across fresh, mechanical, thermal, durability, and density criteria. A comprehensive experimental methodology was employed, including flow table testing, compressive strength (7, 14, and 28 days) and flexural strength measurements, embedded thermal sensors for real-time hydration monitoring, water absorption and chloride ion penetration tests, as well as 28-day density determination. Results revealed clear
... Show MoreThe issue of the prisoners' rights and the way of dealing with them is not just a minor or
primary issue according to the contemporary attitudes to deal with criminals, but it is a fatal
issue that goes with the development of life and comprehension of human rights. As the
criminal is considered as a human-being who can be reformed and qualified, according to the
aims of the contemporary social service the prisoner is regarded as an idle human source who
can be reformed, treated and qualified so as to make him participate to improve his family and
society in the end.
This study aims at reconstructing the prisons bases when applying the laws of the lowest
level of treatment through the research of oppositions, atti
In this paper, the memorization capability of a multilayer interpolative neural network is exploited to estimate a mobile position based on three angles of arrival. The neural network is trained with ideal angles-position patterns distributed uniformly throughout the region. This approach is compared with two other analytical methods, the average-position method which relies on finding the average position of the vertices of the uncertainty triangular region and the optimal position method which relies on finding the nearest ideal angles-position pattern to the measured angles. Simulation results based on estimations of the mobile position of particles moving along a nonlinear path show that the interpolative neural network approach outperf
... Show MoreTransmission lines are generally subjected to faults, so it is advantageous to determine these faults as quickly as possible. This study uses an Artificial Neural Network technique to locate a fault as soon as it happens on the Doukan-Erbil of 132kv double Transmission lines network. CYME 7.1-Programming/Simulink utilized simulation to model the suggested network. A multilayer perceptron feed-forward artificial neural network with a back propagation learning algorithm is used for the intelligence locator's training, testing, assessment, and validation. Voltages and currents were applied as inputs during the neural network's training. The pre-fault and post-fault values determined the scaled values. The neural network's p
... Show More