Preferred Language
Articles
/
1RbmHYsBVTCNdQwC8Mdi
Modified Kohonen network algorithm for selection of the initial centres of Gustafson-Kessel algorithm in credit scoring
...Show More Authors

Credit risk assessment has become an important topic in financial risk administration. Fuzzy clustering analysis has been applied in credit scoring. Gustafson-Kessel (GK) algorithm has been utilised to cluster creditworthy customers as against non-creditworthy ones. A good clustering analysis implemented by good Initial Centres of clusters should be selected. To overcome this problem of Gustafson-Kessel (GK) algorithm, we proposed a modified version of Kohonen Network (KN) algorithm to select the initial centres. Utilising similar degree between points to get similarity density, and then by means of maximum density points selecting; the modified Kohonen Network method generate clustering initial centres to get more reasonable clustering results. The comparative was conducted using three credit scoring datasets: Australian, German and Taiwan. Internal and external indexes of validity clustering are computed and the proposed method was found to have the best performance in these three data sets.

Scopus
Publication Date
Fri Apr 20 2012
Journal Name
International Journal Of Computer And Information Engineering
An Optimal Algorithm for HTML Page Building Process
...Show More Authors

An Optimal Algorithm for HTML Page Building Process

View Publication Preview PDF
Publication Date
Thu Dec 01 2011
Journal Name
2011 Developments In E-systems Engineering
Enhanced Computation Time for Fast Block Matching Algorithm
...Show More Authors

View Publication
Scopus (1)
Scopus Crossref
Publication Date
Fri Sep 03 2021
Journal Name
Entropy
Reliable Recurrence Algorithm for High-Order Krawtchouk Polynomials
...Show More Authors

Krawtchouk polynomials (KPs) and their moments are promising techniques for applications of information theory, coding theory, and signal processing. This is due to the special capabilities of KPs in feature extraction and classification processes. The main challenge in existing KPs recurrence algorithms is that of numerical errors, which occur during the computation of the coefficients in large polynomial sizes, particularly when the KP parameter (p) values deviate away from 0.5 to 0 and 1. To this end, this paper proposes a new recurrence relation in order to compute the coefficients of KPs in high orders. In particular, this paper discusses the development of a new algorithm and presents a new mathematical model for computing the

... Show More
View Publication
Scopus (33)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Tue May 16 2023
Journal Name
Journal Of Engineering
System Identification Algorithm for Systems with Interval Coefficients
...Show More Authors

In this research a new system identification algorithm is presented for obtaining an optimal set of mathematical models for system with perturbed coefficients, then this algorithm is applied practically by an “On Line System Identification Circuit”, based on real time speed response data of a permanent magnet DC motor. Such set of mathematical models represents the physical plant against all variation which may exist in its parameters, and forms a strong mathematical foundation for stability and performance analysis in control theory problems.

View Publication Preview PDF
Crossref
Publication Date
Thu Sep 26 2019
Journal Name
Processes
Fine-Tuning Meta-Heuristic Algorithm for Global Optimization
...Show More Authors

This paper proposes a novel meta-heuristic optimization algorithm called the fine-tuning meta-heuristic algorithm (FTMA) for solving global optimization problems. In this algorithm, the solutions are fine-tuned using the fundamental steps in meta-heuristic optimization, namely, exploration, exploitation, and randomization, in such a way that if one step improves the solution, then it is unnecessary to execute the remaining steps. The performance of the proposed FTMA has been compared with that of five other optimization algorithms over ten benchmark test functions. Nine of them are well-known and already exist in the literature, while the tenth one is proposed by the authors and introduced in this article. One test trial was shown t

... Show More
View Publication Preview PDF
Scopus (25)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Fri Apr 01 2022
Journal Name
Symmetry
Fast Overlapping Block Processing Algorithm for Feature Extraction
...Show More Authors

In many video and image processing applications, the frames are partitioned into blocks, which are extracted and processed sequentially. In this paper, we propose a fast algorithm for calculation of features of overlapping image blocks. We assume the features are projections of the block on separable 2D basis functions (usually orthogonal polynomials) where we benefit from the symmetry with respect to spatial variables. The main idea is based on a construction of auxiliary matrices that virtually extends the original image and makes it possible to avoid a time-consuming computation in loops. These matrices can be pre-calculated, stored and used repeatedly since they are independent of the image itself. We validated experimentally th

... Show More
View Publication
Scopus (18)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Fri Nov 01 2024
Journal Name
Process Safety And Environmental Protection
Optimized ensemble deep random vector functional link with nature inspired algorithm and boruta feature selection: Multi-site intelligent model for air quality index forecasting
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Tue Mar 30 2021
Journal Name
Journal Of Economics And Administrative Sciences
Using Iterative Reweighting Algorithm and Genetic Algorithm to Calculate The Estimation of The Parameters Of The Maximum Likelihood of The Skew Normal Distribution
...Show More Authors

Excessive skewness which occurs sometimes in the data is represented as an obstacle against normal distribution. So, recent studies have witnessed activity in studying the skew-normal distribution (SND) that matches the skewness data which is regarded as a special case of the normal distribution with additional skewness parameter (α), which gives more flexibility to the normal distribution. When estimating the parameters of (SND), we face the problem of the non-linear equation and by using the method of Maximum Likelihood estimation (ML) their solutions will be inaccurate and unreliable. To solve this problem, two methods can be used that are: the genetic algorithm (GA) and the iterative reweighting algorithm (IR) based on the M

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon May 01 2017
Journal Name
2017 5th International Conference On Information And Communication Technology (icoic7)
Analysis of the number of ants in ant colony system algorithm
...Show More Authors

View Publication
Scopus (26)
Crossref (11)
Scopus Crossref
Publication Date
Sun Jun 12 2011
Journal Name
Baghdad Science Journal
Development Binary Search Algorithm
...Show More Authors

There are many methods of searching large amount of data to find one particular piece of information. Such as find name of person in record of mobile. Certain methods of organizing data make the search process more efficient the objective of these methods is to find the element with least cost (least time). Binary search algorithm is faster than sequential and other commonly used search algorithms. This research develops binary search algorithm by using new structure called Triple, structure in this structure data are represented as triple. It consists of three locations (1-Top, 2-Left, and 3-Right) Binary search algorithm divide the search interval in half, this process makes the maximum number of comparisons (Average case com

... Show More
View Publication Preview PDF
Crossref