The Internet of Things (IoT) technology is every object around us and it is used to connect these objects to the Internet to verify Machine to Machine (M2M) communication. The smart house system is the most important application of IoT technology; it is increase the quality of life and decrease the efforts. There were many problems that faced the existing smart house networking systems, including the high cost of implementation and upgrading, high power consumption, and supported limited features. Therefore, this paper presents the design and implementation of smart house network system (SHNS) using Raspberry Pi and Arduino platforms as network infrastructure with ZigBee technology as wireless communication. SHNS consists of two main parts: the main station part and the wireless house nodes part. The local wireless communication between the house nodes and the main station is done through ZigBee technology with low power and low data rate. The mode of operation of these house nodes can be configured dynamically by the end user and determined multicast or broadcast operation according to the user requirements. The implementation and upgrading of SHNS are costless, flexible and required less power comparing with other reviewed systems.
In this paper, a Modified Weighted Low Energy Adaptive Clustering Hierarchy (MW-LEACH) protocol is implemented to improve the Quality of Service (QoS) in Wireless Sensor Network (WSN) with mobile sink node. The Quality of Service is measured in terms of Throughput Ratio (TR), Packet Loss Ratio (PLR) and Energy Consumption (EC). The protocol is implemented based on Python simulation. Simulation Results showed that the proposed protocol provides better Quality of Service in comparison with Weighted Low Energy Cluster Hierarchy (W-LEACH) protocol by 63%.
In this paper an authentication based finger print biometric system is proposed with personal identity information of name and birthday. A generation of National Identification Number (NIDN) is proposed in merging of finger print features and the personal identity information to generate the Quick Response code (QR) image that used in access system. In this paper two approaches are dependent, traditional authentication and strong identification with QR and NIDN information. The system shows accuracy of 96.153% with threshold value of 50. The accuracy reaches to 100% when the threshold value goes under 50.
Many neuroscience applications, including understanding the evolution of the brain, rely on neural cell instance segmentation, which seeks to integrate the identification and segmentation of neuronal cells in microscopic imagery. However, the task is complicated by cell adhesion, deformation, vague cell outlines, low-contrast cell protrusion structures, and background imperfections. On the other hand, existing segmentation approaches frequently produce inaccurate findings. As a result, an effective strategy for using the residual network with attention to segment cells is suggested in this paper. The segmentation mask of neural cells may be accurately predicted. This method is built on U-net, with EfficientNet serving as the e
... Show MoreThe paper presents a neural synchronization into intensive study in order to address challenges preventing from adopting it as an alternative key exchange algorithm. The results obtained from the implementation of neural synchronization with this proposed system address two challenges: namely the verification of establishing the synchronization between the two neural networks, and the public initiation of the input vector for each party. Solutions are presented and mathematical model is developed and presented, and as this proposed system focuses on stream cipher; a system of LFSRs (linear feedback shift registers) has been used with a balanced memory to generate the key. The initializations of these LFSRs are neural weights after achiev
... Show MoreFinding similarities in texts is important in many areas such as information retrieval, automated article scoring, and short answer categorization. Evaluating short answers is not an easy task due to differences in natural language. Methods for calculating the similarity between texts depend on semantic or grammatical aspects. This paper discusses a method for evaluating short answers using semantic networks to represent the typical (correct) answer and students' answers. The semantic network of nodes and relationships represents the text (answers). Moreover, grammatical aspects are found by measuring the similarity of parts of speech between the answers. In addition, finding hierarchical relationships between nodes in netwo
... Show MoreArtificial Neural networks (ANN) are powerful and effective tools in time-series applications. The first aim of this paper is to diagnose better and more efficient ANN models (Back Propagation, Radial Basis Function Neural networks (RBF), and Recurrent neural networks) in solving the linear and nonlinear time-series behavior. The second aim is dealing with finding accurate estimators as the convergence sometimes is stack in the local minima. It is one of the problems that can bias the test of the robustness of the ANN in time series forecasting. To determine the best or the optimal ANN models, forecast Skill (SS) employed to measure the efficiency of the performance of ANN models. The mean square error and
... Show MoreA .technology analysis image using crops agricultural of grading and sorting the test to conducted was experiment The device coupling the of sensor a with camera a and 75 * 75 * 50 dimensions with shape cube studio made-factory locally the study to studio the in taken were photos and ,)blue-green - red (lighting triple with equipped was studio The .used were neural artificial and technology processing image using maturity and quality ,damage of fruits the of characteristics external value the quality 0.92062, of was value regression the damage predict to used was network neural artificial The .network the using scheme regression a of means by 0.98654 of was regression the of maturity and 0.97981 of was regression the of .algorithm Marr
... Show MoreAlbizia lebbeck biomass was used as an adsorbent material in the present study to remove methyl red dye from an aqueous solution. A central composite rotatable design model was used to predict the dye removal efficiency. The optimization was accomplished under a temperature and mixing control system (37?C) with different particle size of 300 and 600 ?m. Highest adsorption efficiencies were obtained at lower dye concentrations and lower weight of adsorbent. The adsorption time, more than 48 h, was found to have a negative effect on the removal efficiency due to secondary metabolites compounds. However, the adsorption time was found to have a positive effect at high dye concentrations and high adsorbent weight. The colour removal effi
... Show MoreIn this paper, a miniaturized 2 × 2 electro-optic plasmonic Mach– Zehnder switch (MZS) based on metal–polymer–silicon hybrid waveguide is presented. Adiabatic tapers are designed to couple the light between the plasmonic phase shifter, implemented in each of the MZS arms, and the 3-dB input/output directional couplers. For 6 µm-long hybrid plasmonic waveguide supported by JRD1 polymer (r33= 390 pm/V), a π-phase shift voltage of 2 V is obtained. The switch is designed for 1550 nm operation wavelength using COMSOL software and characterizes by 2.3 dB insertion loss, 9.9 fJ/bit power consumption, and 640 GHz operation bandwidth